Spaces:
Runtime error
Runtime error
| from typing import List, Tuple, Callable | |
| from pathlib import Path | |
| import PIL.Image | |
| import numpy as np | |
| import datasets | |
| import torch | |
| from torch.utils.data import Dataset | |
| class SegmentationDataset(Dataset): | |
| def __init__( | |
| self, | |
| root: str, | |
| subset: str, | |
| transform: Callable = None, | |
| target_transform: Callable = None, | |
| ) -> None: | |
| super().__init__() | |
| self.images_dir = Path(root) / "images" / subset | |
| self.masks_dir = Path(root) / "annotations" / subset | |
| self.transform = transform | |
| self.target_transform = target_transform | |
| self.images = sorted(list(Path(self.images_dir).glob("**/*.jpg"))) | |
| self.masks = sorted(list(Path(self.masks_dir).glob("**/*.png"))) | |
| def __len__(self) -> int: | |
| return len(self.images) | |
| def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor]: | |
| image = PIL.Image.open(self.images[idx]).convert("RGB") | |
| mask = PIL.Image.open(self.masks[idx]).convert("L") | |
| if self.transform: | |
| image = self.transform(image) | |
| if self.target_transform: | |
| mask = self.target_transform(mask) | |
| return image, mask | |
| def collate_fn(items: List[Tuple[torch.Tensor, torch.Tensor]]) -> Tuple[torch.Tensor, torch.Tensor]: | |
| images = torch.stack([item[0] for item in items]) | |
| masks = torch.stack([item[1] for item in items]) | |
| return images, masks | |