Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
3035027
1
Parent(s):
f01d69f
Remove logging and disable field model
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ from gradio_client import Client
|
|
3 |
from gradio_client.exceptions import AppError
|
4 |
import frontmatter
|
5 |
import os
|
6 |
-
|
7 |
import torch
|
8 |
import logging
|
9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
@@ -16,18 +16,6 @@ logging.basicConfig(
|
|
16 |
)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
-
# Enable transformers logging
|
20 |
-
transformers_logging.set_verbosity_debug()
|
21 |
-
transformers_logging.enable_default_handler()
|
22 |
-
transformers_logging.enable_explicit_format()
|
23 |
-
|
24 |
-
# Enable accelerate and torch logging
|
25 |
-
logging.getLogger("accelerate").setLevel(logging.DEBUG)
|
26 |
-
logging.getLogger("torch").setLevel(logging.DEBUG)
|
27 |
-
logging.getLogger("spaces").setLevel(logging.DEBUG)
|
28 |
-
logging.getLogger("spaces.zero").setLevel(logging.DEBUG)
|
29 |
-
logging.getLogger("transformers").setLevel(logging.DEBUG)
|
30 |
-
|
31 |
import huggingface_hub
|
32 |
|
33 |
import prep_decompiled
|
@@ -43,26 +31,18 @@ tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoderbase-3b")
|
|
43 |
vardecoder_model = AutoModelForCausalLM.from_pretrained(
|
44 |
"ejschwartz/resym-vardecoder",
|
45 |
torch_dtype=torch.bfloat16,
|
|
|
46 |
)
|
47 |
print("Loaded vardecoder model successfully.")
|
48 |
|
49 |
-
print(f"Model device: {next(vardecoder_model.parameters()).device}")
|
50 |
-
print(f"Model dtype: {next(vardecoder_model.parameters()).dtype}")
|
51 |
-
print(f"Model is meta: {next(vardecoder_model.parameters()).is_meta}")
|
52 |
-
print(f"Model parameters: {sum(p.numel() for p in vardecoder_model.parameters() if p.requires_grad):,}")
|
53 |
-
|
54 |
-
# Check memory after first model
|
55 |
-
print(f"GPU memory after vardecoder:")
|
56 |
-
print(f"Allocated: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
|
57 |
-
print(f"Reserved: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")
|
58 |
-
|
59 |
logger.info("Loading fielddecoder model...")
|
60 |
|
61 |
-
fielddecoder_model =
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
66 |
|
67 |
make_gradio_client = lambda: Client("https://ejschwartz-resym-field-helper.hf.space/")
|
68 |
|
@@ -155,23 +135,26 @@ def infer(code):
|
|
155 |
:, : MAX_CONTEXT_LENGTH - MAX_NEW_TOKENS
|
156 |
]
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
175 |
var_output = first_var + ":" + var_output
|
176 |
fieldstring = ", ".join(fields)
|
177 |
return var_output, field_output, varstring, fieldstring
|
|
|
3 |
from gradio_client.exceptions import AppError
|
4 |
import frontmatter
|
5 |
import os
|
6 |
+
import spaces
|
7 |
import torch
|
8 |
import logging
|
9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
16 |
)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
import huggingface_hub
|
20 |
|
21 |
import prep_decompiled
|
|
|
31 |
vardecoder_model = AutoModelForCausalLM.from_pretrained(
|
32 |
"ejschwartz/resym-vardecoder",
|
33 |
torch_dtype=torch.bfloat16,
|
34 |
+
device_map="auto",
|
35 |
)
|
36 |
print("Loaded vardecoder model successfully.")
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
logger.info("Loading fielddecoder model...")
|
39 |
|
40 |
+
fielddecoder_model = None
|
41 |
+
#fielddecoder_model = AutoModelForCausalLM.from_pretrained(
|
42 |
+
# "ejschwartz/resym-fielddecoder",
|
43 |
+
# torch_dtype=torch.bfloat16,
|
44 |
+
#)
|
45 |
+
#logger.info("Successfully loaded fielddecoder model")
|
46 |
|
47 |
make_gradio_client = lambda: Client("https://ejschwartz-resym-field-helper.hf.space/")
|
48 |
|
|
|
135 |
:, : MAX_CONTEXT_LENGTH - MAX_NEW_TOKENS
|
136 |
]
|
137 |
|
138 |
+
if fielddecoder_model is None:
|
139 |
+
field_output = "TEMPORARILY DISABLED"
|
140 |
+
else:
|
141 |
+
field_output = fielddecoder_model.generate(
|
142 |
+
input_ids=field_input_ids,
|
143 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
144 |
+
num_beams=4,
|
145 |
+
num_return_sequences=1,
|
146 |
+
do_sample=False,
|
147 |
+
early_stopping=False,
|
148 |
+
pad_token_id=0,
|
149 |
+
eos_token_id=0,
|
150 |
+
)[0]
|
151 |
+
field_output = tokenizer.decode(
|
152 |
+
field_output[field_input_ids.size(1) :],
|
153 |
+
skip_special_tokens=True,
|
154 |
+
clean_up_tokenization_spaces=True,
|
155 |
+
)
|
156 |
+
|
157 |
+
field_output = fields[0] + ":" + field_output
|
158 |
var_output = first_var + ":" + var_output
|
159 |
fieldstring = ", ".join(fields)
|
160 |
return var_output, field_output, varstring, fieldstring
|