cobra / app.py
einanao's picture
add example + docs
0e1487a
raw
history blame
12.3 kB
import os
import json
import numpy as np
import ffmpeg
import whisper
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from sklearn.tree import DecisionTreeRegressor
import torch
import youtube_dl
import pandas as pd
import streamlit as st
import altair as alt
DATA_DIR = "./data"
if not os.path.exists(DATA_DIR):
os.makedirs(DATA_DIR)
YDL_OPTS = {
"download_archive": os.path.join(DATA_DIR, "archive.txt"),
"format": "bestaudio/best",
"outtmpl": os.path.join(DATA_DIR, "%(title)s.%(ext)s"),
"postprocessors": [
{
"key": "FFmpegExtractAudio",
"preferredcodec": "mp3",
"preferredquality": "192",
}
],
}
llm = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
device = "cuda" if torch.cuda.is_available() else "cpu"
def download(url, ydl_opts):
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
result = ydl.extract_info("{}".format(url))
fname = ydl.prepare_filename(result)
return fname
def transcribe(audio_path, transcript_path):
if os.path.exists(transcript_path):
with open(transcript_path, "r") as f:
result = json.load(f)
else:
whisper_model = whisper.load_model("base")
result = whisper_model.transcribe(audio_path)
with open(transcript_path, "w") as f:
json.dump(result, f)
return result["segments"]
def compute_seg_durations(segments):
return [s["end"] - s["start"] for s in segments]
def compute_info_densities(
segments, seg_durations, llm, tokenizer, device, ctxt_len=512
):
seg_encodings = [tokenizer(seg["text"], return_tensors="pt") for seg in segments]
input_ids = [enc.input_ids.to(device) for enc in seg_encodings]
seg_lens = [x.shape[1] for x in input_ids]
cat_input_ids = torch.cat(input_ids, axis=1)
end = 0
seg_nlls = []
n = cat_input_ids.shape[1]
for i, seg_len in enumerate(seg_lens):
end = min(n, end + seg_len)
start = max(0, end - ctxt_len)
ctxt_ids = cat_input_ids[:, start:end]
target_ids = ctxt_ids.clone()
target_ids[:, :-seg_len] = -100
avg_nll = llm(ctxt_ids, labels=target_ids).loss.detach().numpy()
nll = avg_nll * seg_len
seg_nlls.append(nll)
seg_nlls = np.array(seg_nlls)
info_densities = seg_nlls / seg_durations
return info_densities
def smooth_info_densities(info_densities, seg_durations, max_leaf_nodes, min_sec_leaf):
min_samples_leaf = int(np.ceil(min_sec_leaf / np.mean(seg_durations)))
tree = DecisionTreeRegressor(
max_leaf_nodes=max_leaf_nodes, min_samples_leaf=min_samples_leaf
)
X = np.arange(0, len(info_densities), 1)[:, np.newaxis]
tree.fit(X, info_densities)
smoothed_info_densities = tree.predict(X)
return smoothed_info_densities
def squash_segs(segments, info_densities):
start = segments[0]["start"]
end = None
seg_times = []
seg_densities = [info_densities[0]]
for i in range(1, len(segments)):
curr_density = info_densities[i]
if curr_density != info_densities[i - 1]:
seg = segments[i]
seg_start = seg["start"]
seg_times.append((start, seg_start))
seg_densities.append(curr_density)
start = seg_start
seg_times.append((start, segments[-1]["end"]))
return seg_times, seg_densities
def compute_speedups(info_densities):
avg_density = np.mean(info_densities)
speedups = avg_density / info_densities
return speedups
def compute_actual_speedup(durations, speedups, total_duration):
spedup_durations = durations / speedups
spedup_total_duration = spedup_durations.sum()
actual_speedup_factor = total_duration / spedup_total_duration
return spedup_total_duration, actual_speedup_factor
def postprocess_speedups(
speedups, factor, min_speedup, max_speedup, durations, total_duration, thresh=0.01
):
assert min_speedup <= factor and factor <= max_speedup
tuned_factor = np.array([factor / 10, factor * 10])
actual_speedup_factor = None
while (
actual_speedup_factor is None
or abs(actual_speedup_factor - factor) / factor > thresh
):
mid = tuned_factor.mean()
tuned_speedups = speedups * mid
tuned_speedups = np.round(tuned_speedups, decimals=2)
tuned_speedups = np.clip(tuned_speedups, min_speedup, max_speedup)
_, actual_speedup_factor = compute_actual_speedup(
durations, tuned_speedups, total_duration
)
tuned_factor[0 if actual_speedup_factor < factor else 1] = mid
return tuned_speedups
def cat_clips(seg_times, speedups, audio_path, output_path):
if os.path.exists(output_path):
os.remove(output_path)
in_file = ffmpeg.input(audio_path)
segs = []
for (start, end), speedup in zip(seg_times, speedups):
seg = in_file.filter("atrim", start=start, end=end).filter("atempo", speedup)
segs.append(seg)
cat = ffmpeg.concat(*segs, v=0, a=1)
cat.output(output_path).run()
def format_duration(duration):
s = duration % 60
m = duration // 60
h = m // 60
return "%02d:%02d:%02d" % (h, m, s)
def strike(url, speedup_factor, min_speedup, max_speedup, max_num_segments):
assert min_speedup >= 0.5 # ffmpeg limit
with st.spinner("downloading..."):
name = download(url, YDL_OPTS)
assert name.endswith(".m4a")
name = name.split(".m4a")[0].split("/")[-1]
audio_path = os.path.join(DATA_DIR, "%s.mp3" % name)
transcript_path = os.path.join(DATA_DIR, "%s.json" % name)
output_path = os.path.join(DATA_DIR, "%s_smooth.mp3" % name)
with st.spinner("transcribing..."):
segments = transcribe(audio_path, transcript_path)
seg_durations = compute_seg_durations(segments)
with st.spinner("calculating information density..."):
info_densities = compute_info_densities(
segments, seg_durations, llm, tokenizer, device
)
total_duration = segments[-1]["end"] - segments[0]["start"]
min_sec_leaf = total_duration / max_num_segments
smoothed_info_densities = smooth_info_densities(
info_densities, seg_durations, max_num_segments, min_sec_leaf
)
squashed_times, squashed_densities = squash_segs(segments, smoothed_info_densities)
squashed_durations = np.array([end - start for start, end in squashed_times])
speedups = compute_speedups(squashed_densities)
speedups = postprocess_speedups(
speedups,
speedup_factor,
min_speedup,
max_speedup,
squashed_durations,
total_duration,
)
with st.spinner("stitching segments..."):
cat_clips(squashed_times, speedups, audio_path, output_path)
times = np.array([(seg["start"] + seg["end"]) / 2 for seg in segments])
times /= 60
annotations = [seg["text"] for seg in segments]
data = [times, info_densities / np.log(2), annotations]
cols = ["time (minutes)", "bits per second", "transcript"]
df = pd.DataFrame(list(zip(*data)), columns=cols)
min_time = segments[0]["start"] / 60
max_time = segments[-1]["end"] / 60
lines = (
alt.Chart(df, title="information rate")
.mark_line(color="gray", opacity=0.5)
.encode(
x=alt.X(cols[0], scale=alt.Scale(domain=(min_time, max_time))),
y=cols[1],
)
)
dots = (
alt.Chart(df)
.mark_circle(size=50, opacity=1)
.encode(
x=alt.X(cols[0], scale=alt.Scale(domain=(min_time, max_time))),
y=cols[1],
tooltip=["transcript"],
)
)
st.altair_chart((lines + dots).interactive(), use_container_width=True)
st.info("hover over the dots in the plot above this message to read the transcript")
st.write("sped-up audio:")
st.audio(output_path)
times = sum([list(x) for x in squashed_times], [])
times = np.array(times)
times /= 60
data = [times, np.repeat(speedups, 2)]
cols = ["time (minutes)", "speedup"]
df = pd.DataFrame(list(zip(*data)), columns=cols)
min_actual_speedups = min(speedups)
max_actual_speedups = max(speedups)
eps = 0.1
lines = (
alt.Chart(df, title="adaptive speedup based on information rate")
.mark_line()
.encode(
x=alt.X(cols[0], scale=alt.Scale(domain=(min_time, max_time))),
y=alt.Y(
cols[1],
scale=alt.Scale(
domain=(min_actual_speedups - eps, max_actual_speedups + eps)
),
),
)
)
st.altair_chart(lines.interactive(), use_container_width=True)
st.markdown(
"""
## cobra
cobra stands for (co)nstant (b)it-(r)ate (a)udio.
it's a tool for speeding up audio from podcasts and lectures.
instead of applying the same speedup (like 1.5x) to the entire file,
it applies a higher speedup to parts of the file with less information content
, and a lower speedup to parts with higher information content.
it measures information content using a language model.
## usage
1. enter a youtube url
2. specify your desired overall speedup
3. specify your minimum speedup. no segment of the file will be sped up slower than this.
4. specify your maximum speedup. no segment of the file will be sped up faster than this.
5. specify how much variance you'd like to see in the speedup over time (2 = constant speedup throughout the file, 100 = frequently-changing speedup)
6. hit submit
7. wait for the charts and processed audio to appear. it can take a while to download, transcribe, calculate information density, and stitch segments.
"""
)
with st.form("my_form"):
url = st.text_input(
"youtube url", value="https://www.youtube.com/watch?v=_3MBQm7GFIM"
)
speedup_factor = st.slider("speedup", min_value=1.0, max_value=10.0, value=1.5)
min_speedup = st.slider("minimum speedup", min_value=0.5, max_value=5.0, value=1.0)
max_speedup = st.slider("maximum speedup", min_value=0.5, max_value=5.0, value=2.0)
max_num_segments = st.slider(
"variance in speedup over time", min_value=2, max_value=100, value=20
)
submitted = st.form_submit_button("submit")
if min_speedup <= speedup_factor and speedup_factor <= max_speedup:
if submitted:
st.write("original video:")
st.video(url)
strike(url, speedup_factor, min_speedup, max_speedup, max_num_segments)
else:
st.write("speedup must be between min and max")
st.markdown(
"""
## example
"""
)
st.image(
"example.png",
width=400,
caption="the information rate is lower in the first half of the video, when they are bs'ing and using buzzwords, so the speedup is higher. the information rate is higher in the second half of the video, when they walk through a concrete example of codex solving a challenging programming problem, so the speedup is lower.",
)
st.markdown(
"""
## algorithm
1. download the audio of a youtube video (e.g., a podcast or lecture) using [youtube-dl](https://youtube-dl.org/)
2. use [whisper](https://github.com/openai/whisper) to transcribe the audio into text
3. use the [flan-t5](https://huggingface.co/docs/transformers/model_doc/flan-t5) language model to compute the negative log-likelihood of each text token given the previous tokens
4. compute the information rate of each text segment in the transcript: negative log-likelihood of all tokens in segment divided by duration of segment
5. fit a piecewise-constant function to the information rate vs. time data using a decision tree regression model from [scikit-learn](https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html). this lets us control the number of segments that will be stitched together in step 8, which can run slowly if the number of segments is too large.
6. compute speedup for each segment: 1 / information rate (induces constant bit-rate over time)
7. clip speedups with user's min and max, and use binary search to find linear scaling factor that matches the user's desired overall speedup
8. apply scaled and clipped speedups to each segment, and stitch the segments together using ffmpeg
"""
)