Spaces:
Runtime error
Runtime error
Commit
Β·
f7b33f1
1
Parent(s):
75f9ac3
feat: map to trl/autotrain compatible columns
Browse files
src/distilabel_dataset_generator/sft.py
CHANGED
|
@@ -5,6 +5,7 @@ import pandas as pd
|
|
| 5 |
from distilabel.distiset import Distiset
|
| 6 |
from distilabel.llms import InferenceEndpointsLLM
|
| 7 |
from distilabel.pipeline import Pipeline
|
|
|
|
| 8 |
from distilabel.steps.tasks import MagpieGenerator, TextGeneration
|
| 9 |
|
| 10 |
from src.distilabel_dataset_generator.utils import (
|
|
@@ -141,8 +142,18 @@ DEFAULT_DATASET = pd.DataFrame(
|
|
| 141 |
|
| 142 |
|
| 143 |
def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, token: str = None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
with Pipeline(name="sft") as pipeline:
|
| 145 |
-
|
| 146 |
llm=InferenceEndpointsLLM(
|
| 147 |
model_id=MODEL,
|
| 148 |
tokenizer_id=MODEL,
|
|
@@ -150,6 +161,7 @@ def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, token: str =
|
|
| 150 |
generation_kwargs={
|
| 151 |
"temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
|
| 152 |
"do_sample": True,
|
|
|
|
| 153 |
"stop_sequences": [
|
| 154 |
"<|eot_id|>",
|
| 155 |
"<|end_of_text|>",
|
|
@@ -163,7 +175,12 @@ def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, token: str =
|
|
| 163 |
n_turns=num_turns,
|
| 164 |
num_rows=num_rows,
|
| 165 |
system_prompt=system_prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
)
|
|
|
|
| 167 |
distiset: Distiset = pipeline.run()
|
| 168 |
result_queue.put(distiset)
|
| 169 |
|
|
@@ -212,7 +229,9 @@ def generate_dataset(
|
|
| 212 |
"Please sign in with Hugging Face to be able to push the dataset to the Hub."
|
| 213 |
)
|
| 214 |
|
| 215 |
-
gr.Info(
|
|
|
|
|
|
|
| 216 |
result_queue = multiprocessing.Queue()
|
| 217 |
p = multiprocessing.Process(
|
| 218 |
target=_run_pipeline,
|
|
@@ -223,7 +242,7 @@ def generate_dataset(
|
|
| 223 |
distiset = result_queue.get()
|
| 224 |
|
| 225 |
if dataset_name is not None:
|
| 226 |
-
gr.Info("Pushing dataset to Hugging Face Hub
|
| 227 |
repo_id = f"{orgs_selector}/{dataset_name}"
|
| 228 |
distiset.push_to_hub(
|
| 229 |
repo_id=repo_id,
|
|
@@ -231,17 +250,19 @@ def generate_dataset(
|
|
| 231 |
include_script=False,
|
| 232 |
token=token.token,
|
| 233 |
)
|
| 234 |
-
gr.Info(
|
|
|
|
|
|
|
| 235 |
else:
|
| 236 |
# If not pushing to hub generate the dataset directly
|
| 237 |
distiset = distiset["default"]["train"]
|
| 238 |
if num_turns == 1:
|
| 239 |
-
outputs = distiset.to_pandas()[["
|
| 240 |
else:
|
| 241 |
outputs = {"conversation_id": [], "role": [], "content": []}
|
| 242 |
-
conversations = distiset["
|
| 243 |
for idx, entry in enumerate(conversations):
|
| 244 |
-
for message in entry["
|
| 245 |
outputs["conversation_id"].append(idx + 1)
|
| 246 |
outputs["role"].append(message["role"])
|
| 247 |
outputs["content"].append(message["content"])
|
|
|
|
| 5 |
from distilabel.distiset import Distiset
|
| 6 |
from distilabel.llms import InferenceEndpointsLLM
|
| 7 |
from distilabel.pipeline import Pipeline
|
| 8 |
+
from distilabel.steps import KeepColumns
|
| 9 |
from distilabel.steps.tasks import MagpieGenerator, TextGeneration
|
| 10 |
|
| 11 |
from src.distilabel_dataset_generator.utils import (
|
|
|
|
| 142 |
|
| 143 |
|
| 144 |
def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, token: str = None):
|
| 145 |
+
output_mappings = (
|
| 146 |
+
{
|
| 147 |
+
"instruction": "prompt",
|
| 148 |
+
"response": "completion",
|
| 149 |
+
}
|
| 150 |
+
if num_turns == 1
|
| 151 |
+
else {
|
| 152 |
+
"conversation": "messages",
|
| 153 |
+
}
|
| 154 |
+
)
|
| 155 |
with Pipeline(name="sft") as pipeline:
|
| 156 |
+
magpie = MagpieGenerator(
|
| 157 |
llm=InferenceEndpointsLLM(
|
| 158 |
model_id=MODEL,
|
| 159 |
tokenizer_id=MODEL,
|
|
|
|
| 161 |
generation_kwargs={
|
| 162 |
"temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
|
| 163 |
"do_sample": True,
|
| 164 |
+
"max_new_tokens": 2048,
|
| 165 |
"stop_sequences": [
|
| 166 |
"<|eot_id|>",
|
| 167 |
"<|end_of_text|>",
|
|
|
|
| 175 |
n_turns=num_turns,
|
| 176 |
num_rows=num_rows,
|
| 177 |
system_prompt=system_prompt,
|
| 178 |
+
output_mappings=output_mappings,
|
| 179 |
+
)
|
| 180 |
+
keep_columns = KeepColumns(
|
| 181 |
+
columns=list(output_mappings.values()) + ["model_name"],
|
| 182 |
)
|
| 183 |
+
magpie.connect(keep_columns)
|
| 184 |
distiset: Distiset = pipeline.run()
|
| 185 |
result_queue.put(distiset)
|
| 186 |
|
|
|
|
| 229 |
"Please sign in with Hugging Face to be able to push the dataset to the Hub."
|
| 230 |
)
|
| 231 |
|
| 232 |
+
gr.Info(
|
| 233 |
+
"Started pipeline execution. This might take a while, depending on the number of rows and turns you have selected. Don't close this page."
|
| 234 |
+
)
|
| 235 |
result_queue = multiprocessing.Queue()
|
| 236 |
p = multiprocessing.Process(
|
| 237 |
target=_run_pipeline,
|
|
|
|
| 242 |
distiset = result_queue.get()
|
| 243 |
|
| 244 |
if dataset_name is not None:
|
| 245 |
+
gr.Info("Pushing dataset to Hugging Face Hub.")
|
| 246 |
repo_id = f"{orgs_selector}/{dataset_name}"
|
| 247 |
distiset.push_to_hub(
|
| 248 |
repo_id=repo_id,
|
|
|
|
| 250 |
include_script=False,
|
| 251 |
token=token.token,
|
| 252 |
)
|
| 253 |
+
gr.Info(
|
| 254 |
+
f'Dataset pushed to Hugging Face Hub: <a href="https://huggingface.co/datasets/{repo_id}">https://huggingface.co/datasets/{repo_id}</a>'
|
| 255 |
+
)
|
| 256 |
else:
|
| 257 |
# If not pushing to hub generate the dataset directly
|
| 258 |
distiset = distiset["default"]["train"]
|
| 259 |
if num_turns == 1:
|
| 260 |
+
outputs = distiset.to_pandas()[["prompt", "completion"]]
|
| 261 |
else:
|
| 262 |
outputs = {"conversation_id": [], "role": [], "content": []}
|
| 263 |
+
conversations = distiset["messages"]
|
| 264 |
for idx, entry in enumerate(conversations):
|
| 265 |
+
for message in entry["messages"]:
|
| 266 |
outputs["conversation_id"].append(idx + 1)
|
| 267 |
outputs["role"].append(message["role"])
|
| 268 |
outputs["content"].append(message["content"])
|