Spaces:
Paused
Paused
初次提交
Browse files- .gitignore +2 -0
- app.py +62 -0
- gitattributes.txt +27 -0
- packages.txt +1 -0
- requirements.txt +5 -0
- test-img.jpg +0 -0
- upcunet_v3.py +714 -0
- weights_v3/up2x-latest-conservative.pth +3 -0
- weights_v3/up2x-latest-denoise1x.pth +3 -0
- weights_v3/up2x-latest-denoise2x.pth +3 -0
- weights_v3/up2x-latest-denoise3x.pth +3 -0
- weights_v3/up2x-latest-no-denoise.pth +3 -0
- weights_v3/up3x-latest-conservative.pth +3 -0
- weights_v3/up3x-latest-denoise3x.pth +3 -0
- weights_v3/up3x-latest-no-denoise.pth +3 -0
- weights_v3/up4x-latest-conservative.pth +3 -0
- weights_v3/up4x-latest-denoise3x.pth +3 -0
- weights_v3/up4x-latest-no-denoise.pth +3 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
__pycache__/
|
app.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from upcunet_v3 import RealWaifuUpScaler
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import time
|
| 4 |
+
import logging
|
| 5 |
+
import os
|
| 6 |
+
from PIL import ImageOps
|
| 7 |
+
import numpy as np
|
| 8 |
+
import math
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def greet(input_img, input_model_name, input_tile_mode):
|
| 12 |
+
# if input_img.size[0] * input_img.size[1] > 256 * 256:
|
| 13 |
+
# y = int(math.sqrt(256*256/input_img.size[0]*input_img.size[1]))
|
| 14 |
+
# x = int(input_img.size[0]/input_img.size[1]*y)
|
| 15 |
+
# input_img = ImageOps.fit(input_img, (x, y))
|
| 16 |
+
input_img = np.array(input_img)
|
| 17 |
+
if input_model_name not in model_cache:
|
| 18 |
+
t1 = time.time()
|
| 19 |
+
upscaler = RealWaifuUpScaler(input_model_name[2], ModelPath + input_model_name, half=False, device="cpu")
|
| 20 |
+
t2 = time.time()
|
| 21 |
+
logger.info(f'load model time, {t2 - t1}')
|
| 22 |
+
model_cache[input_model_name] = upscaler
|
| 23 |
+
else:
|
| 24 |
+
upscaler = model_cache[input_model_name]
|
| 25 |
+
logger.info(f'load model from cache')
|
| 26 |
+
|
| 27 |
+
start = time.time()
|
| 28 |
+
result = upscaler(input_img, tile_mode=input_tile_mode)
|
| 29 |
+
end = time.time()
|
| 30 |
+
logger.info(f'input_model_name, {input_model_name}')
|
| 31 |
+
logger.info(f'input_tile_mode, {input_tile_mode}')
|
| 32 |
+
logger.info(f'input shape, {input_img.shape}')
|
| 33 |
+
logger.info(f'output shape, {result.shape}')
|
| 34 |
+
logger.info(f'speed time, {end - start}')
|
| 35 |
+
return result
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
if __name__ == '__main__':
|
| 39 |
+
logging.basicConfig(level=logging.INFO, format="[%(asctime)s] [%(process)d] [%(levelname)s] %(message)s")
|
| 40 |
+
logger = logging.getLogger()
|
| 41 |
+
|
| 42 |
+
ModelPath = "weights_v3/"
|
| 43 |
+
model_cache = {}
|
| 44 |
+
|
| 45 |
+
input_model_name = gr.inputs.Dropdown(os.listdir(ModelPath), default="up2x-latest-denoise2x.pth", label='选择model')
|
| 46 |
+
input_tile_mode = gr.inputs.Dropdown([0, 1, 2, 3, 4], default=2, label='选择tile_mode')
|
| 47 |
+
input_img = gr.inputs.Image(label='image', type='pil')
|
| 48 |
+
|
| 49 |
+
inputs = [input_img, input_model_name, input_tile_mode]
|
| 50 |
+
outputs = "image"
|
| 51 |
+
iface = gr.Interface(fn=greet,
|
| 52 |
+
inputs=inputs,
|
| 53 |
+
outputs=outputs,
|
| 54 |
+
allow_screenshot=False,
|
| 55 |
+
allow_flagging='never',
|
| 56 |
+
examples=[['test-img.jpg', "up2x-latest-denoise2x.pth", 2]],
|
| 57 |
+
article='[https://github.com/bilibili/ailab/tree/main/Real-CUGAN](https://github.com/bilibili/ailab/tree/main/Real-CUGAN)<br>'
|
| 58 |
+
'感谢b站开源的项目,图片过大会导致内存不足,所有我将图片裁剪小,想体验大图片的效果请自行前往上面的链接。<br>'
|
| 59 |
+
'修改bbb'
|
| 60 |
+
'The large image will lead to memory limit exceeded. So I crop and resize image. '
|
| 61 |
+
'If you want to experience the large image, please go to the link above.')
|
| 62 |
+
iface.launch()
|
gitattributes.txt
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
python3-opencv
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
opencv-python
|
| 3 |
+
numpy
|
| 4 |
+
gradio
|
| 5 |
+
jinja2
|
test-img.jpg
ADDED
|
upcunet_v3.py
ADDED
|
@@ -0,0 +1,714 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn as nn
|
| 3 |
+
from torch.nn import functional as F
|
| 4 |
+
import os, sys
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
root_path = os.path.abspath('.')
|
| 8 |
+
sys.path.append(root_path)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class SEBlock(nn.Module):
|
| 12 |
+
def __init__(self, in_channels, reduction=8, bias=False):
|
| 13 |
+
super(SEBlock, self).__init__()
|
| 14 |
+
self.conv1 = nn.Conv2d(in_channels, in_channels // reduction, 1, 1, 0, bias=bias)
|
| 15 |
+
self.conv2 = nn.Conv2d(in_channels // reduction, in_channels, 1, 1, 0, bias=bias)
|
| 16 |
+
|
| 17 |
+
def forward(self, x):
|
| 18 |
+
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
|
| 19 |
+
x0 = torch.mean(x.float(), dim=(2, 3), keepdim=True).half()
|
| 20 |
+
else:
|
| 21 |
+
x0 = torch.mean(x, dim=(2, 3), keepdim=True)
|
| 22 |
+
x0 = self.conv1(x0)
|
| 23 |
+
x0 = F.relu(x0, inplace=True)
|
| 24 |
+
x0 = self.conv2(x0)
|
| 25 |
+
x0 = torch.sigmoid(x0)
|
| 26 |
+
x = torch.mul(x, x0)
|
| 27 |
+
return x
|
| 28 |
+
|
| 29 |
+
def forward_mean(self, x, x0):
|
| 30 |
+
x0 = self.conv1(x0)
|
| 31 |
+
x0 = F.relu(x0, inplace=True)
|
| 32 |
+
x0 = self.conv2(x0)
|
| 33 |
+
x0 = torch.sigmoid(x0)
|
| 34 |
+
x = torch.mul(x, x0)
|
| 35 |
+
return x
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class UNetConv(nn.Module):
|
| 39 |
+
def __init__(self, in_channels, mid_channels, out_channels, se):
|
| 40 |
+
super(UNetConv, self).__init__()
|
| 41 |
+
self.conv = nn.Sequential(
|
| 42 |
+
nn.Conv2d(in_channels, mid_channels, 3, 1, 0),
|
| 43 |
+
nn.LeakyReLU(0.1, inplace=True),
|
| 44 |
+
nn.Conv2d(mid_channels, out_channels, 3, 1, 0),
|
| 45 |
+
nn.LeakyReLU(0.1, inplace=True),
|
| 46 |
+
)
|
| 47 |
+
if se:
|
| 48 |
+
self.seblock = SEBlock(out_channels, reduction=8, bias=True)
|
| 49 |
+
else:
|
| 50 |
+
self.seblock = None
|
| 51 |
+
|
| 52 |
+
def forward(self, x):
|
| 53 |
+
z = self.conv(x)
|
| 54 |
+
if self.seblock is not None:
|
| 55 |
+
z = self.seblock(z)
|
| 56 |
+
return z
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class UNet1(nn.Module):
|
| 60 |
+
def __init__(self, in_channels, out_channels, deconv):
|
| 61 |
+
super(UNet1, self).__init__()
|
| 62 |
+
self.conv1 = UNetConv(in_channels, 32, 64, se=False)
|
| 63 |
+
self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0)
|
| 64 |
+
self.conv2 = UNetConv(64, 128, 64, se=True)
|
| 65 |
+
self.conv2_up = nn.ConvTranspose2d(64, 64, 2, 2, 0)
|
| 66 |
+
self.conv3 = nn.Conv2d(64, 64, 3, 1, 0)
|
| 67 |
+
|
| 68 |
+
if deconv:
|
| 69 |
+
self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 4, 2, 3)
|
| 70 |
+
else:
|
| 71 |
+
self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0)
|
| 72 |
+
|
| 73 |
+
for m in self.modules():
|
| 74 |
+
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
| 75 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
| 76 |
+
elif isinstance(m, nn.Linear):
|
| 77 |
+
nn.init.normal_(m.weight, 0, 0.01)
|
| 78 |
+
if m.bias is not None:
|
| 79 |
+
nn.init.constant_(m.bias, 0)
|
| 80 |
+
|
| 81 |
+
def forward(self, x):
|
| 82 |
+
x1 = self.conv1(x)
|
| 83 |
+
x2 = self.conv1_down(x1)
|
| 84 |
+
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
| 85 |
+
x2 = self.conv2(x2)
|
| 86 |
+
x2 = self.conv2_up(x2)
|
| 87 |
+
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
| 88 |
+
|
| 89 |
+
x1 = F.pad(x1, (-4, -4, -4, -4))
|
| 90 |
+
x3 = self.conv3(x1 + x2)
|
| 91 |
+
x3 = F.leaky_relu(x3, 0.1, inplace=True)
|
| 92 |
+
z = self.conv_bottom(x3)
|
| 93 |
+
return z
|
| 94 |
+
|
| 95 |
+
def forward_a(self, x):
|
| 96 |
+
x1 = self.conv1(x)
|
| 97 |
+
x2 = self.conv1_down(x1)
|
| 98 |
+
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
| 99 |
+
x2 = self.conv2.conv(x2)
|
| 100 |
+
return x1, x2
|
| 101 |
+
|
| 102 |
+
def forward_b(self, x1, x2):
|
| 103 |
+
x2 = self.conv2_up(x2)
|
| 104 |
+
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
| 105 |
+
|
| 106 |
+
x1 = F.pad(x1, (-4, -4, -4, -4))
|
| 107 |
+
x3 = self.conv3(x1 + x2)
|
| 108 |
+
x3 = F.leaky_relu(x3, 0.1, inplace=True)
|
| 109 |
+
z = self.conv_bottom(x3)
|
| 110 |
+
return z
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
class UNet1x3(nn.Module):
|
| 114 |
+
def __init__(self, in_channels, out_channels, deconv):
|
| 115 |
+
super(UNet1x3, self).__init__()
|
| 116 |
+
self.conv1 = UNetConv(in_channels, 32, 64, se=False)
|
| 117 |
+
self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0)
|
| 118 |
+
self.conv2 = UNetConv(64, 128, 64, se=True)
|
| 119 |
+
self.conv2_up = nn.ConvTranspose2d(64, 64, 2, 2, 0)
|
| 120 |
+
self.conv3 = nn.Conv2d(64, 64, 3, 1, 0)
|
| 121 |
+
|
| 122 |
+
if deconv:
|
| 123 |
+
self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 5, 3, 2)
|
| 124 |
+
else:
|
| 125 |
+
self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0)
|
| 126 |
+
|
| 127 |
+
for m in self.modules():
|
| 128 |
+
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
| 129 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
| 130 |
+
elif isinstance(m, nn.Linear):
|
| 131 |
+
nn.init.normal_(m.weight, 0, 0.01)
|
| 132 |
+
if m.bias is not None:
|
| 133 |
+
nn.init.constant_(m.bias, 0)
|
| 134 |
+
|
| 135 |
+
def forward(self, x):
|
| 136 |
+
x1 = self.conv1(x)
|
| 137 |
+
x2 = self.conv1_down(x1)
|
| 138 |
+
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
| 139 |
+
x2 = self.conv2(x2)
|
| 140 |
+
x2 = self.conv2_up(x2)
|
| 141 |
+
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
| 142 |
+
|
| 143 |
+
x1 = F.pad(x1, (-4, -4, -4, -4))
|
| 144 |
+
x3 = self.conv3(x1 + x2)
|
| 145 |
+
x3 = F.leaky_relu(x3, 0.1, inplace=True)
|
| 146 |
+
z = self.conv_bottom(x3)
|
| 147 |
+
return z
|
| 148 |
+
|
| 149 |
+
def forward_a(self, x):
|
| 150 |
+
x1 = self.conv1(x)
|
| 151 |
+
x2 = self.conv1_down(x1)
|
| 152 |
+
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
| 153 |
+
x2 = self.conv2.conv(x2)
|
| 154 |
+
return x1, x2
|
| 155 |
+
|
| 156 |
+
def forward_b(self, x1, x2):
|
| 157 |
+
x2 = self.conv2_up(x2)
|
| 158 |
+
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
| 159 |
+
|
| 160 |
+
x1 = F.pad(x1, (-4, -4, -4, -4))
|
| 161 |
+
x3 = self.conv3(x1 + x2)
|
| 162 |
+
x3 = F.leaky_relu(x3, 0.1, inplace=True)
|
| 163 |
+
z = self.conv_bottom(x3)
|
| 164 |
+
return z
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
class UNet2(nn.Module):
|
| 168 |
+
def __init__(self, in_channels, out_channels, deconv):
|
| 169 |
+
super(UNet2, self).__init__()
|
| 170 |
+
|
| 171 |
+
self.conv1 = UNetConv(in_channels, 32, 64, se=False)
|
| 172 |
+
self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0)
|
| 173 |
+
self.conv2 = UNetConv(64, 64, 128, se=True)
|
| 174 |
+
self.conv2_down = nn.Conv2d(128, 128, 2, 2, 0)
|
| 175 |
+
self.conv3 = UNetConv(128, 256, 128, se=True)
|
| 176 |
+
self.conv3_up = nn.ConvTranspose2d(128, 128, 2, 2, 0)
|
| 177 |
+
self.conv4 = UNetConv(128, 64, 64, se=True)
|
| 178 |
+
self.conv4_up = nn.ConvTranspose2d(64, 64, 2, 2, 0)
|
| 179 |
+
self.conv5 = nn.Conv2d(64, 64, 3, 1, 0)
|
| 180 |
+
|
| 181 |
+
if deconv:
|
| 182 |
+
self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 4, 2, 3)
|
| 183 |
+
else:
|
| 184 |
+
self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0)
|
| 185 |
+
|
| 186 |
+
for m in self.modules():
|
| 187 |
+
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
| 188 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
| 189 |
+
elif isinstance(m, nn.Linear):
|
| 190 |
+
nn.init.normal_(m.weight, 0, 0.01)
|
| 191 |
+
if m.bias is not None:
|
| 192 |
+
nn.init.constant_(m.bias, 0)
|
| 193 |
+
|
| 194 |
+
def forward(self, x):
|
| 195 |
+
x1 = self.conv1(x)
|
| 196 |
+
x2 = self.conv1_down(x1)
|
| 197 |
+
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
| 198 |
+
x2 = self.conv2(x2)
|
| 199 |
+
|
| 200 |
+
x3 = self.conv2_down(x2)
|
| 201 |
+
x3 = F.leaky_relu(x3, 0.1, inplace=True)
|
| 202 |
+
x3 = self.conv3(x3)
|
| 203 |
+
x3 = self.conv3_up(x3)
|
| 204 |
+
x3 = F.leaky_relu(x3, 0.1, inplace=True)
|
| 205 |
+
|
| 206 |
+
x2 = F.pad(x2, (-4, -4, -4, -4))
|
| 207 |
+
x4 = self.conv4(x2 + x3)
|
| 208 |
+
x4 = self.conv4_up(x4)
|
| 209 |
+
x4 = F.leaky_relu(x4, 0.1, inplace=True)
|
| 210 |
+
|
| 211 |
+
x1 = F.pad(x1, (-16, -16, -16, -16))
|
| 212 |
+
x5 = self.conv5(x1 + x4)
|
| 213 |
+
x5 = F.leaky_relu(x5, 0.1, inplace=True)
|
| 214 |
+
|
| 215 |
+
z = self.conv_bottom(x5)
|
| 216 |
+
return z
|
| 217 |
+
|
| 218 |
+
def forward_a(self, x): # conv234结尾有se
|
| 219 |
+
x1 = self.conv1(x)
|
| 220 |
+
x2 = self.conv1_down(x1)
|
| 221 |
+
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
| 222 |
+
x2 = self.conv2.conv(x2)
|
| 223 |
+
return x1, x2
|
| 224 |
+
|
| 225 |
+
def forward_b(self, x2): # conv234结尾有se
|
| 226 |
+
x3 = self.conv2_down(x2)
|
| 227 |
+
x3 = F.leaky_relu(x3, 0.1, inplace=True)
|
| 228 |
+
x3 = self.conv3.conv(x3)
|
| 229 |
+
return x3
|
| 230 |
+
|
| 231 |
+
def forward_c(self, x2, x3): # conv234结尾有se
|
| 232 |
+
x3 = self.conv3_up(x3)
|
| 233 |
+
x3 = F.leaky_relu(x3, 0.1, inplace=True)
|
| 234 |
+
|
| 235 |
+
x2 = F.pad(x2, (-4, -4, -4, -4))
|
| 236 |
+
x4 = self.conv4.conv(x2 + x3)
|
| 237 |
+
return x4
|
| 238 |
+
|
| 239 |
+
def forward_d(self, x1, x4): # conv234结尾有se
|
| 240 |
+
x4 = self.conv4_up(x4)
|
| 241 |
+
x4 = F.leaky_relu(x4, 0.1, inplace=True)
|
| 242 |
+
|
| 243 |
+
x1 = F.pad(x1, (-16, -16, -16, -16))
|
| 244 |
+
x5 = self.conv5(x1 + x4)
|
| 245 |
+
x5 = F.leaky_relu(x5, 0.1, inplace=True)
|
| 246 |
+
|
| 247 |
+
z = self.conv_bottom(x5)
|
| 248 |
+
return z
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
class UpCunet2x(nn.Module): # 完美tile,全程无损
|
| 252 |
+
def __init__(self, in_channels=3, out_channels=3):
|
| 253 |
+
super(UpCunet2x, self).__init__()
|
| 254 |
+
self.unet1 = UNet1(in_channels, out_channels, deconv=True)
|
| 255 |
+
self.unet2 = UNet2(in_channels, out_channels, deconv=False)
|
| 256 |
+
|
| 257 |
+
def forward(self, x, tile_mode): # 1.7G
|
| 258 |
+
n, c, h0, w0 = x.shape
|
| 259 |
+
if (tile_mode == 0): # 不tile
|
| 260 |
+
ph = ((h0 - 1) // 2 + 1) * 2
|
| 261 |
+
pw = ((w0 - 1) // 2 + 1) * 2
|
| 262 |
+
x = F.pad(x, (18, 18 + pw - w0, 18, 18 + ph - h0), 'reflect') # 需要保证被2整除
|
| 263 |
+
x = self.unet1.forward(x)
|
| 264 |
+
x0 = self.unet2.forward(x)
|
| 265 |
+
x1 = F.pad(x, (-20, -20, -20, -20))
|
| 266 |
+
x = torch.add(x0, x1)
|
| 267 |
+
if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 2, :w0 * 2]
|
| 268 |
+
return x
|
| 269 |
+
elif (tile_mode == 1): # 对长边减半
|
| 270 |
+
if (w0 >= h0):
|
| 271 |
+
crop_size_w = ((w0 - 1) // 4 * 4 + 4) // 2 # 减半后能被2整除,所以要先被4整除
|
| 272 |
+
crop_size_h = (h0 - 1) // 2 * 2 + 2 # 能被2整除
|
| 273 |
+
else:
|
| 274 |
+
crop_size_h = ((h0 - 1) // 4 * 4 + 4) // 2 # 减半后能被2整除,所以要先被4整除
|
| 275 |
+
crop_size_w = (w0 - 1) // 2 * 2 + 2 # 能被2整除
|
| 276 |
+
crop_size = (crop_size_h, crop_size_w) # 6.6G
|
| 277 |
+
elif (tile_mode == 2): # hw都减半
|
| 278 |
+
crop_size = (((h0 - 1) // 4 * 4 + 4) // 2, ((w0 - 1) // 4 * 4 + 4) // 2) # 5.6G
|
| 279 |
+
elif (tile_mode == 3): # hw都三分之一
|
| 280 |
+
crop_size = (((h0 - 1) // 6 * 6 + 6) // 3, ((w0 - 1) // 6 * 6 + 6) // 3) # 4.2G
|
| 281 |
+
elif (tile_mode == 4): # hw都四分���一
|
| 282 |
+
crop_size = (((h0 - 1) // 8 * 8 + 8) // 4, ((w0 - 1) // 8 * 8 + 8) // 4) # 3.7G
|
| 283 |
+
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
|
| 284 |
+
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
|
| 285 |
+
x = F.pad(x, (18, 18 + pw - w0, 18, 18 + ph - h0), 'reflect')
|
| 286 |
+
n, c, h, w = x.shape
|
| 287 |
+
se_mean0 = torch.zeros((n, 64, 1, 1)).to(x.device)
|
| 288 |
+
if ("Half" in x.type()):
|
| 289 |
+
se_mean0 = se_mean0.half()
|
| 290 |
+
n_patch = 0
|
| 291 |
+
tmp_dict = {}
|
| 292 |
+
opt_res_dict = {}
|
| 293 |
+
for i in range(0, h - 36, crop_size[0]):
|
| 294 |
+
tmp_dict[i] = {}
|
| 295 |
+
for j in range(0, w - 36, crop_size[1]):
|
| 296 |
+
x_crop = x[:, :, i:i + crop_size[0] + 36, j:j + crop_size[1] + 36]
|
| 297 |
+
n, c1, h1, w1 = x_crop.shape
|
| 298 |
+
tmp0, x_crop = self.unet1.forward_a(x_crop)
|
| 299 |
+
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
|
| 300 |
+
tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3), keepdim=True).half()
|
| 301 |
+
else:
|
| 302 |
+
tmp_se_mean = torch.mean(x_crop, dim=(2, 3), keepdim=True)
|
| 303 |
+
se_mean0 += tmp_se_mean
|
| 304 |
+
n_patch += 1
|
| 305 |
+
tmp_dict[i][j] = (tmp0, x_crop)
|
| 306 |
+
se_mean0 /= n_patch
|
| 307 |
+
se_mean1 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64
|
| 308 |
+
if ("Half" in x.type()):
|
| 309 |
+
se_mean1 = se_mean1.half()
|
| 310 |
+
for i in range(0, h - 36, crop_size[0]):
|
| 311 |
+
for j in range(0, w - 36, crop_size[1]):
|
| 312 |
+
tmp0, x_crop = tmp_dict[i][j]
|
| 313 |
+
x_crop = self.unet1.conv2.seblock.forward_mean(x_crop, se_mean0)
|
| 314 |
+
opt_unet1 = self.unet1.forward_b(tmp0, x_crop)
|
| 315 |
+
tmp_x1, tmp_x2 = self.unet2.forward_a(opt_unet1)
|
| 316 |
+
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
|
| 317 |
+
tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3), keepdim=True).half()
|
| 318 |
+
else:
|
| 319 |
+
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3), keepdim=True)
|
| 320 |
+
se_mean1 += tmp_se_mean
|
| 321 |
+
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2)
|
| 322 |
+
se_mean1 /= n_patch
|
| 323 |
+
se_mean0 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64
|
| 324 |
+
if ("Half" in x.type()):
|
| 325 |
+
se_mean0 = se_mean0.half()
|
| 326 |
+
for i in range(0, h - 36, crop_size[0]):
|
| 327 |
+
for j in range(0, w - 36, crop_size[1]):
|
| 328 |
+
opt_unet1, tmp_x1, tmp_x2 = tmp_dict[i][j]
|
| 329 |
+
tmp_x2 = self.unet2.conv2.seblock.forward_mean(tmp_x2, se_mean1)
|
| 330 |
+
tmp_x3 = self.unet2.forward_b(tmp_x2)
|
| 331 |
+
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
|
| 332 |
+
tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3), keepdim=True).half()
|
| 333 |
+
else:
|
| 334 |
+
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3), keepdim=True)
|
| 335 |
+
se_mean0 += tmp_se_mean
|
| 336 |
+
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2, tmp_x3)
|
| 337 |
+
se_mean0 /= n_patch
|
| 338 |
+
se_mean1 = torch.zeros((n, 64, 1, 1)).to(x.device) # 64#128#128#64
|
| 339 |
+
if ("Half" in x.type()):
|
| 340 |
+
se_mean1 = se_mean1.half()
|
| 341 |
+
for i in range(0, h - 36, crop_size[0]):
|
| 342 |
+
for j in range(0, w - 36, crop_size[1]):
|
| 343 |
+
opt_unet1, tmp_x1, tmp_x2, tmp_x3 = tmp_dict[i][j]
|
| 344 |
+
tmp_x3 = self.unet2.conv3.seblock.forward_mean(tmp_x3, se_mean0)
|
| 345 |
+
tmp_x4 = self.unet2.forward_c(tmp_x2, tmp_x3)
|
| 346 |
+
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
|
| 347 |
+
tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3), keepdim=True).half()
|
| 348 |
+
else:
|
| 349 |
+
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3), keepdim=True)
|
| 350 |
+
se_mean1 += tmp_se_mean
|
| 351 |
+
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x4)
|
| 352 |
+
se_mean1 /= n_patch
|
| 353 |
+
for i in range(0, h - 36, crop_size[0]):
|
| 354 |
+
opt_res_dict[i] = {}
|
| 355 |
+
for j in range(0, w - 36, crop_size[1]):
|
| 356 |
+
opt_unet1, tmp_x1, tmp_x4 = tmp_dict[i][j]
|
| 357 |
+
tmp_x4 = self.unet2.conv4.seblock.forward_mean(tmp_x4, se_mean1)
|
| 358 |
+
x0 = self.unet2.forward_d(tmp_x1, tmp_x4)
|
| 359 |
+
x1 = F.pad(opt_unet1, (-20, -20, -20, -20))
|
| 360 |
+
x_crop = torch.add(x0, x1) # x0是unet2的最终输出
|
| 361 |
+
opt_res_dict[i][j] = x_crop
|
| 362 |
+
del tmp_dict
|
| 363 |
+
torch.cuda.empty_cache()
|
| 364 |
+
res = torch.zeros((n, c, h * 2 - 72, w * 2 - 72)).to(x.device)
|
| 365 |
+
if ("Half" in x.type()):
|
| 366 |
+
res = res.half()
|
| 367 |
+
for i in range(0, h - 36, crop_size[0]):
|
| 368 |
+
for j in range(0, w - 36, crop_size[1]):
|
| 369 |
+
res[:, :, i * 2:i * 2 + h1 * 2 - 72, j * 2:j * 2 + w1 * 2 - 72] = opt_res_dict[i][j]
|
| 370 |
+
del opt_res_dict
|
| 371 |
+
torch.cuda.empty_cache()
|
| 372 |
+
if (w0 != pw or h0 != ph): res = res[:, :, :h0 * 2, :w0 * 2]
|
| 373 |
+
return res #
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
class UpCunet3x(nn.Module): # 完美tile,全程无损
|
| 377 |
+
def __init__(self, in_channels=3, out_channels=3):
|
| 378 |
+
super(UpCunet3x, self).__init__()
|
| 379 |
+
self.unet1 = UNet1x3(in_channels, out_channels, deconv=True)
|
| 380 |
+
self.unet2 = UNet2(in_channels, out_channels, deconv=False)
|
| 381 |
+
|
| 382 |
+
def forward(self, x, tile_mode): # 1.7G
|
| 383 |
+
n, c, h0, w0 = x.shape
|
| 384 |
+
if (tile_mode == 0): # 不tile
|
| 385 |
+
ph = ((h0 - 1) // 4 + 1) * 4
|
| 386 |
+
pw = ((w0 - 1) // 4 + 1) * 4
|
| 387 |
+
x = F.pad(x, (14, 14 + pw - w0, 14, 14 + ph - h0), 'reflect') # 需要保证被2整除
|
| 388 |
+
x = self.unet1.forward(x)
|
| 389 |
+
x0 = self.unet2.forward(x)
|
| 390 |
+
x1 = F.pad(x, (-20, -20, -20, -20))
|
| 391 |
+
x = torch.add(x0, x1)
|
| 392 |
+
if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 3, :w0 * 3]
|
| 393 |
+
return x
|
| 394 |
+
elif (tile_mode == 1): # 对长边减半
|
| 395 |
+
if (w0 >= h0):
|
| 396 |
+
crop_size_w = ((w0 - 1) // 8 * 8 + 8) // 2 # 减半后能被4整除,所以要先被8整除
|
| 397 |
+
crop_size_h = (h0 - 1) // 4 * 4 + 4 # 能被4整除
|
| 398 |
+
else:
|
| 399 |
+
crop_size_h = ((h0 - 1) // 8 * 8 + 8) // 2 # 减半后能被4整除,所以要先被8整除
|
| 400 |
+
crop_size_w = (w0 - 1) // 4 * 4 + 4 # 能被4整除
|
| 401 |
+
crop_size = (crop_size_h, crop_size_w) # 6.6G
|
| 402 |
+
elif (tile_mode == 2): # hw都减半
|
| 403 |
+
crop_size = (((h0 - 1) // 8 * 8 + 8) // 2, ((w0 - 1) // 8 * 8 + 8) // 2) # 5.6G
|
| 404 |
+
elif (tile_mode == 3): # hw都三分之一
|
| 405 |
+
crop_size = (((h0 - 1) // 12 * 12 + 12) // 3, ((w0 - 1) // 12 * 12 + 12) // 3) # 4.2G
|
| 406 |
+
elif (tile_mode == 4): # hw都四分之一
|
| 407 |
+
crop_size = (((h0 - 1) // 16 * 16 + 16) // 4, ((w0 - 1) // 16 * 16 + 16) // 4) # 3.7G
|
| 408 |
+
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
|
| 409 |
+
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
|
| 410 |
+
x = F.pad(x, (14, 14 + pw - w0, 14, 14 + ph - h0), 'reflect')
|
| 411 |
+
n, c, h, w = x.shape
|
| 412 |
+
se_mean0 = torch.zeros((n, 64, 1, 1)).to(x.device)
|
| 413 |
+
if ("Half" in x.type()):
|
| 414 |
+
se_mean0 = se_mean0.half()
|
| 415 |
+
n_patch = 0
|
| 416 |
+
tmp_dict = {}
|
| 417 |
+
opt_res_dict = {}
|
| 418 |
+
for i in range(0, h - 28, crop_size[0]):
|
| 419 |
+
tmp_dict[i] = {}
|
| 420 |
+
for j in range(0, w - 28, crop_size[1]):
|
| 421 |
+
x_crop = x[:, :, i:i + crop_size[0] + 28, j:j + crop_size[1] + 28]
|
| 422 |
+
n, c1, h1, w1 = x_crop.shape
|
| 423 |
+
tmp0, x_crop = self.unet1.forward_a(x_crop)
|
| 424 |
+
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
|
| 425 |
+
tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3), keepdim=True).half()
|
| 426 |
+
else:
|
| 427 |
+
tmp_se_mean = torch.mean(x_crop, dim=(2, 3), keepdim=True)
|
| 428 |
+
se_mean0 += tmp_se_mean
|
| 429 |
+
n_patch += 1
|
| 430 |
+
tmp_dict[i][j] = (tmp0, x_crop)
|
| 431 |
+
se_mean0 /= n_patch
|
| 432 |
+
se_mean1 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64
|
| 433 |
+
if ("Half" in x.type()):
|
| 434 |
+
se_mean1 = se_mean1.half()
|
| 435 |
+
for i in range(0, h - 28, crop_size[0]):
|
| 436 |
+
for j in range(0, w - 28, crop_size[1]):
|
| 437 |
+
tmp0, x_crop = tmp_dict[i][j]
|
| 438 |
+
x_crop = self.unet1.conv2.seblock.forward_mean(x_crop, se_mean0)
|
| 439 |
+
opt_unet1 = self.unet1.forward_b(tmp0, x_crop)
|
| 440 |
+
tmp_x1, tmp_x2 = self.unet2.forward_a(opt_unet1)
|
| 441 |
+
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
|
| 442 |
+
tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3), keepdim=True).half()
|
| 443 |
+
else:
|
| 444 |
+
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3), keepdim=True)
|
| 445 |
+
se_mean1 += tmp_se_mean
|
| 446 |
+
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2)
|
| 447 |
+
se_mean1 /= n_patch
|
| 448 |
+
se_mean0 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64
|
| 449 |
+
if ("Half" in x.type()):
|
| 450 |
+
se_mean0 = se_mean0.half()
|
| 451 |
+
for i in range(0, h - 28, crop_size[0]):
|
| 452 |
+
for j in range(0, w - 28, crop_size[1]):
|
| 453 |
+
opt_unet1, tmp_x1, tmp_x2 = tmp_dict[i][j]
|
| 454 |
+
tmp_x2 = self.unet2.conv2.seblock.forward_mean(tmp_x2, se_mean1)
|
| 455 |
+
tmp_x3 = self.unet2.forward_b(tmp_x2)
|
| 456 |
+
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
|
| 457 |
+
tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3), keepdim=True).half()
|
| 458 |
+
else:
|
| 459 |
+
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3), keepdim=True)
|
| 460 |
+
se_mean0 += tmp_se_mean
|
| 461 |
+
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2, tmp_x3)
|
| 462 |
+
se_mean0 /= n_patch
|
| 463 |
+
se_mean1 = torch.zeros((n, 64, 1, 1)).to(x.device) # 64#128#128#64
|
| 464 |
+
if ("Half" in x.type()):
|
| 465 |
+
se_mean1 = se_mean1.half()
|
| 466 |
+
for i in range(0, h - 28, crop_size[0]):
|
| 467 |
+
for j in range(0, w - 28, crop_size[1]):
|
| 468 |
+
opt_unet1, tmp_x1, tmp_x2, tmp_x3 = tmp_dict[i][j]
|
| 469 |
+
tmp_x3 = self.unet2.conv3.seblock.forward_mean(tmp_x3, se_mean0)
|
| 470 |
+
tmp_x4 = self.unet2.forward_c(tmp_x2, tmp_x3)
|
| 471 |
+
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
|
| 472 |
+
tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3), keepdim=True).half()
|
| 473 |
+
else:
|
| 474 |
+
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3), keepdim=True)
|
| 475 |
+
se_mean1 += tmp_se_mean
|
| 476 |
+
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x4)
|
| 477 |
+
se_mean1 /= n_patch
|
| 478 |
+
for i in range(0, h - 28, crop_size[0]):
|
| 479 |
+
opt_res_dict[i] = {}
|
| 480 |
+
for j in range(0, w - 28, crop_size[1]):
|
| 481 |
+
opt_unet1, tmp_x1, tmp_x4 = tmp_dict[i][j]
|
| 482 |
+
tmp_x4 = self.unet2.conv4.seblock.forward_mean(tmp_x4, se_mean1)
|
| 483 |
+
x0 = self.unet2.forward_d(tmp_x1, tmp_x4)
|
| 484 |
+
x1 = F.pad(opt_unet1, (-20, -20, -20, -20))
|
| 485 |
+
x_crop = torch.add(x0, x1) # x0是unet2的最终输出
|
| 486 |
+
opt_res_dict[i][j] = x_crop #
|
| 487 |
+
del tmp_dict
|
| 488 |
+
torch.cuda.empty_cache()
|
| 489 |
+
res = torch.zeros((n, c, h * 3 - 84, w * 3 - 84)).to(x.device)
|
| 490 |
+
if ("Half" in x.type()):
|
| 491 |
+
res = res.half()
|
| 492 |
+
for i in range(0, h - 28, crop_size[0]):
|
| 493 |
+
for j in range(0, w - 28, crop_size[1]):
|
| 494 |
+
res[:, :, i * 3:i * 3 + h1 * 3 - 84, j * 3:j * 3 + w1 * 3 - 84] = opt_res_dict[i][j]
|
| 495 |
+
del opt_res_dict
|
| 496 |
+
torch.cuda.empty_cache()
|
| 497 |
+
if (w0 != pw or h0 != ph): res = res[:, :, :h0 * 3, :w0 * 3]
|
| 498 |
+
return res
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
class UpCunet4x(nn.Module): # 完美tile,全程无损
|
| 502 |
+
def __init__(self, in_channels=3, out_channels=3):
|
| 503 |
+
super(UpCunet4x, self).__init__()
|
| 504 |
+
self.unet1 = UNet1(in_channels, 64, deconv=True)
|
| 505 |
+
self.unet2 = UNet2(64, 64, deconv=False)
|
| 506 |
+
self.ps = nn.PixelShuffle(2)
|
| 507 |
+
self.conv_final = nn.Conv2d(64, 12, 3, 1, padding=0, bias=True)
|
| 508 |
+
|
| 509 |
+
def forward(self, x, tile_mode):
|
| 510 |
+
n, c, h0, w0 = x.shape
|
| 511 |
+
x00 = x
|
| 512 |
+
if (tile_mode == 0): # 不tile
|
| 513 |
+
ph = ((h0 - 1) // 2 + 1) * 2
|
| 514 |
+
pw = ((w0 - 1) // 2 + 1) * 2
|
| 515 |
+
x = F.pad(x, (19, 19 + pw - w0, 19, 19 + ph - h0), 'reflect') # 需要保证被2整除
|
| 516 |
+
x = self.unet1.forward(x)
|
| 517 |
+
x0 = self.unet2.forward(x)
|
| 518 |
+
x1 = F.pad(x, (-20, -20, -20, -20))
|
| 519 |
+
x = torch.add(x0, x1)
|
| 520 |
+
x = self.conv_final(x)
|
| 521 |
+
x = F.pad(x, (-1, -1, -1, -1))
|
| 522 |
+
x = self.ps(x)
|
| 523 |
+
if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 4, :w0 * 4]
|
| 524 |
+
x += F.interpolate(x00, scale_factor=4, mode='nearest')
|
| 525 |
+
return x
|
| 526 |
+
elif (tile_mode == 1): # 对长边减半
|
| 527 |
+
if (w0 >= h0):
|
| 528 |
+
crop_size_w = ((w0 - 1) // 4 * 4 + 4) // 2 # 减半后能被2整除,所以要先被4整除
|
| 529 |
+
crop_size_h = (h0 - 1) // 2 * 2 + 2 # 能被2整除
|
| 530 |
+
else:
|
| 531 |
+
crop_size_h = ((h0 - 1) // 4 * 4 + 4) // 2 # 减半后能被2整除,所以要先被4整除
|
| 532 |
+
crop_size_w = (w0 - 1) // 2 * 2 + 2 # 能被2整除
|
| 533 |
+
crop_size = (crop_size_h, crop_size_w) # 6.6G
|
| 534 |
+
elif (tile_mode == 2): # hw都减半
|
| 535 |
+
crop_size = (((h0 - 1) // 4 * 4 + 4) // 2, ((w0 - 1) // 4 * 4 + 4) // 2) # 5.6G
|
| 536 |
+
elif (tile_mode == 3): # hw都三分之一
|
| 537 |
+
crop_size = (((h0 - 1) // 6 * 6 + 6) // 3, ((w0 - 1) // 6 * 6 + 6) // 3) # 4.1G
|
| 538 |
+
elif (tile_mode == 4): # hw都四分之一
|
| 539 |
+
crop_size = (((h0 - 1) // 8 * 8 + 8) // 4, ((w0 - 1) // 8 * 8 + 8) // 4) # 3.7G
|
| 540 |
+
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
|
| 541 |
+
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
|
| 542 |
+
x = F.pad(x, (19, 19 + pw - w0, 19, 19 + ph - h0), 'reflect')
|
| 543 |
+
n, c, h, w = x.shape
|
| 544 |
+
se_mean0 = torch.zeros((n, 64, 1, 1)).to(x.device)
|
| 545 |
+
if ("Half" in x.type()):
|
| 546 |
+
se_mean0 = se_mean0.half()
|
| 547 |
+
n_patch = 0
|
| 548 |
+
tmp_dict = {}
|
| 549 |
+
opt_res_dict = {}
|
| 550 |
+
for i in range(0, h - 38, crop_size[0]):
|
| 551 |
+
tmp_dict[i] = {}
|
| 552 |
+
for j in range(0, w - 38, crop_size[1]):
|
| 553 |
+
x_crop = x[:, :, i:i + crop_size[0] + 38, j:j + crop_size[1] + 38]
|
| 554 |
+
n, c1, h1, w1 = x_crop.shape
|
| 555 |
+
tmp0, x_crop = self.unet1.forward_a(x_crop)
|
| 556 |
+
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
|
| 557 |
+
tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3), keepdim=True).half()
|
| 558 |
+
else:
|
| 559 |
+
tmp_se_mean = torch.mean(x_crop, dim=(2, 3), keepdim=True)
|
| 560 |
+
se_mean0 += tmp_se_mean
|
| 561 |
+
n_patch += 1
|
| 562 |
+
tmp_dict[i][j] = (tmp0, x_crop)
|
| 563 |
+
se_mean0 /= n_patch
|
| 564 |
+
se_mean1 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64
|
| 565 |
+
if ("Half" in x.type()):
|
| 566 |
+
se_mean1 = se_mean1.half()
|
| 567 |
+
for i in range(0, h - 38, crop_size[0]):
|
| 568 |
+
for j in range(0, w - 38, crop_size[1]):
|
| 569 |
+
tmp0, x_crop = tmp_dict[i][j]
|
| 570 |
+
x_crop = self.unet1.conv2.seblock.forward_mean(x_crop, se_mean0)
|
| 571 |
+
opt_unet1 = self.unet1.forward_b(tmp0, x_crop)
|
| 572 |
+
tmp_x1, tmp_x2 = self.unet2.forward_a(opt_unet1)
|
| 573 |
+
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
|
| 574 |
+
tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3), keepdim=True).half()
|
| 575 |
+
else:
|
| 576 |
+
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3), keepdim=True)
|
| 577 |
+
se_mean1 += tmp_se_mean
|
| 578 |
+
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2)
|
| 579 |
+
se_mean1 /= n_patch
|
| 580 |
+
se_mean0 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64
|
| 581 |
+
if ("Half" in x.type()):
|
| 582 |
+
se_mean0 = se_mean0.half()
|
| 583 |
+
for i in range(0, h - 38, crop_size[0]):
|
| 584 |
+
for j in range(0, w - 38, crop_size[1]):
|
| 585 |
+
opt_unet1, tmp_x1, tmp_x2 = tmp_dict[i][j]
|
| 586 |
+
tmp_x2 = self.unet2.conv2.seblock.forward_mean(tmp_x2, se_mean1)
|
| 587 |
+
tmp_x3 = self.unet2.forward_b(tmp_x2)
|
| 588 |
+
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
|
| 589 |
+
tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3), keepdim=True).half()
|
| 590 |
+
else:
|
| 591 |
+
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3), keepdim=True)
|
| 592 |
+
se_mean0 += tmp_se_mean
|
| 593 |
+
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2, tmp_x3)
|
| 594 |
+
se_mean0 /= n_patch
|
| 595 |
+
se_mean1 = torch.zeros((n, 64, 1, 1)).to(x.device) # 64#128#128#64
|
| 596 |
+
if ("Half" in x.type()):
|
| 597 |
+
se_mean1 = se_mean1.half()
|
| 598 |
+
for i in range(0, h - 38, crop_size[0]):
|
| 599 |
+
for j in range(0, w - 38, crop_size[1]):
|
| 600 |
+
opt_unet1, tmp_x1, tmp_x2, tmp_x3 = tmp_dict[i][j]
|
| 601 |
+
tmp_x3 = self.unet2.conv3.seblock.forward_mean(tmp_x3, se_mean0)
|
| 602 |
+
tmp_x4 = self.unet2.forward_c(tmp_x2, tmp_x3)
|
| 603 |
+
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
|
| 604 |
+
tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3), keepdim=True).half()
|
| 605 |
+
else:
|
| 606 |
+
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3), keepdim=True)
|
| 607 |
+
se_mean1 += tmp_se_mean
|
| 608 |
+
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x4)
|
| 609 |
+
se_mean1 /= n_patch
|
| 610 |
+
for i in range(0, h - 38, crop_size[0]):
|
| 611 |
+
opt_res_dict[i] = {}
|
| 612 |
+
for j in range(0, w - 38, crop_size[1]):
|
| 613 |
+
opt_unet1, tmp_x1, tmp_x4 = tmp_dict[i][j]
|
| 614 |
+
tmp_x4 = self.unet2.conv4.seblock.forward_mean(tmp_x4, se_mean1)
|
| 615 |
+
x0 = self.unet2.forward_d(tmp_x1, tmp_x4)
|
| 616 |
+
x1 = F.pad(opt_unet1, (-20, -20, -20, -20))
|
| 617 |
+
x_crop = torch.add(x0, x1) # x0是unet2的最终输出
|
| 618 |
+
x_crop = self.conv_final(x_crop)
|
| 619 |
+
x_crop = F.pad(x_crop, (-1, -1, -1, -1))
|
| 620 |
+
x_crop = self.ps(x_crop)
|
| 621 |
+
opt_res_dict[i][j] = x_crop
|
| 622 |
+
del tmp_dict
|
| 623 |
+
torch.cuda.empty_cache()
|
| 624 |
+
res = torch.zeros((n, c, h * 4 - 152, w * 4 - 152)).to(x.device)
|
| 625 |
+
if ("Half" in x.type()):
|
| 626 |
+
res = res.half()
|
| 627 |
+
for i in range(0, h - 38, crop_size[0]):
|
| 628 |
+
for j in range(0, w - 38, crop_size[1]):
|
| 629 |
+
# print(opt_res_dict[i][j].shape,res[:, :, i * 4:i * 4 + h1 * 4 - 144, j * 4:j * 4 + w1 * 4 - 144].shape)
|
| 630 |
+
res[:, :, i * 4:i * 4 + h1 * 4 - 152, j * 4:j * 4 + w1 * 4 - 152] = opt_res_dict[i][j]
|
| 631 |
+
del opt_res_dict
|
| 632 |
+
torch.cuda.empty_cache()
|
| 633 |
+
if (w0 != pw or h0 != ph): res = res[:, :, :h0 * 4, :w0 * 4]
|
| 634 |
+
res += F.interpolate(x00, scale_factor=4, mode='nearest')
|
| 635 |
+
return res #
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
class RealWaifuUpScaler(object):
|
| 639 |
+
def __init__(self, scale, weight_path, half, device):
|
| 640 |
+
weight = torch.load(weight_path, map_location="cpu")
|
| 641 |
+
self.model = eval("UpCunet%sx" % scale)()
|
| 642 |
+
if (half == True):
|
| 643 |
+
self.model = self.model.half().to(device)
|
| 644 |
+
else:
|
| 645 |
+
self.model = self.model.to(device)
|
| 646 |
+
self.model.load_state_dict(weight, strict=True)
|
| 647 |
+
self.model.eval()
|
| 648 |
+
self.half = half
|
| 649 |
+
self.device = device
|
| 650 |
+
|
| 651 |
+
def np2tensor(self, np_frame):
|
| 652 |
+
if (self.half == False):
|
| 653 |
+
return torch.from_numpy(np.transpose(np_frame, (2, 0, 1))).unsqueeze(0).to(self.device).float() / 255
|
| 654 |
+
else:
|
| 655 |
+
return torch.from_numpy(np.transpose(np_frame, (2, 0, 1))).unsqueeze(0).to(self.device).half() / 255
|
| 656 |
+
|
| 657 |
+
def tensor2np(self, tensor):
|
| 658 |
+
if (self.half == False):
|
| 659 |
+
return (
|
| 660 |
+
np.transpose((tensor.data.squeeze() * 255.0).round().clamp_(0, 255).byte().cpu().numpy(), (1, 2, 0)))
|
| 661 |
+
else:
|
| 662 |
+
return (np.transpose((tensor.data.squeeze().float() * 255.0).round().clamp_(0, 255).byte().cpu().numpy(),
|
| 663 |
+
(1, 2, 0)))
|
| 664 |
+
|
| 665 |
+
def __call__(self, frame, tile_mode):
|
| 666 |
+
with torch.no_grad():
|
| 667 |
+
tensor = self.np2tensor(frame)
|
| 668 |
+
result = self.tensor2np(self.model(tensor, tile_mode))
|
| 669 |
+
return result
|
| 670 |
+
|
| 671 |
+
|
| 672 |
+
if __name__ == "__main__":
|
| 673 |
+
###########inference_img
|
| 674 |
+
import time, cv2, sys
|
| 675 |
+
from time import time as ttime
|
| 676 |
+
|
| 677 |
+
for weight_path, scale in [("weights_v3/up2x-latest-denoise3x.pth", 2), ("weights_v3/up3x-latest-denoise3x.pth", 3),
|
| 678 |
+
("weights_v3/up4x-latest-denoise3x.pth", 4)]:
|
| 679 |
+
for tile_mode in [0, 1, 2, 3, 4]:
|
| 680 |
+
upscaler2x = RealWaifuUpScaler(scale, weight_path, half=True, device="cuda:0")
|
| 681 |
+
input_dir = "%s/input_dir1" % root_path
|
| 682 |
+
output_dir = "%s/opt-dir-all-test" % root_path
|
| 683 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 684 |
+
for name in os.listdir(input_dir):
|
| 685 |
+
print(name)
|
| 686 |
+
tmp = name.split(".")
|
| 687 |
+
inp_path = os.path.join(input_dir, name)
|
| 688 |
+
suffix = tmp[-1]
|
| 689 |
+
prefix = ".".join(tmp[:-1])
|
| 690 |
+
tmp_path = os.path.join(root_path, "tmp", "%s.%s" % (int(time.time() * 1000000), suffix))
|
| 691 |
+
print(inp_path, tmp_path)
|
| 692 |
+
# 支持中文路径
|
| 693 |
+
# os.link(inp_path, tmp_path)#win用硬链接
|
| 694 |
+
os.symlink(inp_path, tmp_path) # linux用软链接
|
| 695 |
+
frame = cv2.imread(tmp_path)[:, :, [2, 1, 0]]
|
| 696 |
+
t0 = ttime()
|
| 697 |
+
result = upscaler2x(frame, tile_mode=tile_mode)[:, :, ::-1]
|
| 698 |
+
t1 = ttime()
|
| 699 |
+
print(prefix, "done", t1 - t0)
|
| 700 |
+
tmp_opt_path = os.path.join(root_path, "tmp", "%s.%s" % (int(time.time() * 1000000), suffix))
|
| 701 |
+
cv2.imwrite(tmp_opt_path, result)
|
| 702 |
+
n = 0
|
| 703 |
+
while (1):
|
| 704 |
+
if (n == 0):
|
| 705 |
+
suffix = "_%sx_tile%s.png" % (scale, tile_mode)
|
| 706 |
+
else:
|
| 707 |
+
suffix = "_%sx_tile%s_%s.png" % (scale, tile_mode, n) #
|
| 708 |
+
if (os.path.exists(os.path.join(output_dir, prefix + suffix)) == False):
|
| 709 |
+
break
|
| 710 |
+
else:
|
| 711 |
+
n += 1
|
| 712 |
+
final_opt_path = os.path.join(output_dir, prefix + suffix)
|
| 713 |
+
os.rename(tmp_opt_path, final_opt_path)
|
| 714 |
+
os.remove(tmp_path)
|
weights_v3/up2x-latest-conservative.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6cfe3b23687915d08ba96010f25198d9cfe8a683aa4131f1acf7eaa58ee1de93
|
| 3 |
+
size 5147249
|
weights_v3/up2x-latest-denoise1x.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2e783c39da6a6394fbc250fdd069c55eaedc43971c4f2405322f18949ce38573
|
| 3 |
+
size 5147249
|
weights_v3/up2x-latest-denoise2x.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8188b3faef4258cf748c59360cbc8086ebedf4a63eb9d5d6637d45f819d32496
|
| 3 |
+
size 5147249
|
weights_v3/up2x-latest-denoise3x.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0a14739f3f5fcbd74ec3ce2806d13a47916c916b20afe4a39d95f6df4ca6abd8
|
| 3 |
+
size 5147249
|
weights_v3/up2x-latest-no-denoise.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f491f9ecf6964ead9f3a36bf03e83527f32c6a341b683f7378ac6c1e2a5f0d16
|
| 3 |
+
size 5147249
|
weights_v3/up3x-latest-conservative.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f6ea5fd20380413beb2701182483fd80c2e86f3b3f08053eb3df4975184aefe3
|
| 3 |
+
size 5154161
|
weights_v3/up3x-latest-denoise3x.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:39f1e6e90d50e5528a63f4ba1866bad23365a737cbea22a80769b2ec4c1c3285
|
| 3 |
+
size 5154161
|
weights_v3/up3x-latest-no-denoise.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:763f0a87e70d744673f1a41db5396d5f334d22de97fff68ffc40deb91404a584
|
| 3 |
+
size 5154161
|
weights_v3/up4x-latest-conservative.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a8c8185def699b0883662a02df0ef2e6db3b0275170b6cc0d28089b64b273427
|
| 3 |
+
size 5636403
|
weights_v3/up4x-latest-denoise3x.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:42bd8fcdae37c12c5b25ed59625266bfa65780071a8d38192d83756cb85e98dd
|
| 3 |
+
size 5636403
|
weights_v3/up4x-latest-no-denoise.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aaf3ef78a488cce5d3842154925eb70ff8423b8298e2cd189ec66eb7f6f66fae
|
| 3 |
+
size 5636403
|