Spaces:
Sleeping
Sleeping
| from sklearn.model_selection import train_test_split | |
| from sklearn.svm import SVR | |
| from sklearn.ensemble import RandomForestRegressor | |
| from sklearn.linear_model import LinearRegression, Lasso | |
| from sklearn.metrics import r2_score | |
| class ModelTrainer: | |
| def __init__(self, dataframe): | |
| self.dataframe = dataframe | |
| def train_models(self): | |
| features = list(self.dataframe.columns[:-1]) | |
| X = self.dataframe[features] | |
| y = self.dataframe['TARGET'] | |
| X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
| models = { | |
| "SVR": SVR(), | |
| "RandomForest": RandomForestRegressor(), | |
| "LinearRegression": LinearRegression(), | |
| "Lasso": Lasso() | |
| } | |
| best_model = None | |
| best_score = float('-inf') | |
| for name, model in models.items(): | |
| model.fit(X_train, y_train) | |
| y_pred = model.predict(X_test) | |
| score = r2_score(y_test, y_pred) | |
| print(f"{name} R2 Score: {score}") | |
| if score > best_score: | |
| best_score = score | |
| best_model = model | |
| print(f"Best Model: {best_model}") | |
| return best_model |