Spaces:
Runtime error
Runtime error
| import logging | |
| from functools import partial | |
| from typing import Callable, Optional | |
| import pandas as pd | |
| import streamlit as st | |
| from bokeh.plotting import Figure | |
| from embedding_lenses.data import uploaded_file_to_dataframe | |
| from embedding_lenses.dimensionality_reduction import (get_tsne_embeddings, | |
| get_umap_embeddings) | |
| from embedding_lenses.embedding import embed_text, load_model | |
| from embedding_lenses.utils import encode_labels | |
| from embedding_lenses.visualization import draw_interactive_scatter_plot | |
| from sentence_transformers import SentenceTransformer | |
| from data import hub_dataset_to_dataframe | |
| from perplexity import KenlmModel | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| EMBEDDING_MODELS = ["distiluse-base-multilingual-cased-v1", "all-mpnet-base-v2", "flax-sentence-embeddings/all_datasets_v3_mpnet-base"] | |
| DIMENSIONALITY_REDUCTION_ALGORITHMS = ["UMAP", "t-SNE"] | |
| LANGUAGES = [ | |
| "af", | |
| "ar", | |
| "az", | |
| "be", | |
| "bg", | |
| "bn", | |
| "ca", | |
| "cs", | |
| "da", | |
| "de", | |
| "el", | |
| "en", | |
| "es", | |
| "et", | |
| "fa", | |
| "fi", | |
| "fr", | |
| "gu", | |
| "he", | |
| "hi", | |
| "hr", | |
| "hu", | |
| "hy", | |
| "id", | |
| "is", | |
| "it", | |
| "ja", | |
| "ka", | |
| "kk", | |
| "km", | |
| "kn", | |
| "ko", | |
| "lt", | |
| "lv", | |
| "mk", | |
| "ml", | |
| "mn", | |
| "mr", | |
| "my", | |
| "ne", | |
| "nl", | |
| "no", | |
| "pl", | |
| "pt", | |
| "ro", | |
| "ru", | |
| "uk", | |
| "zh", | |
| ] | |
| SEED = 0 | |
| def generate_plot( | |
| df: pd.DataFrame, | |
| text_column: str, | |
| label_column: str, | |
| sample: Optional[int], | |
| dimensionality_reduction_function: Callable, | |
| model: SentenceTransformer, | |
| ) -> Figure: | |
| if text_column not in df.columns: | |
| raise ValueError(f"The specified column name doesn't exist. Columns available: {df.columns.values}") | |
| if label_column not in df.columns: | |
| df[label_column] = 0 | |
| df = df.dropna(subset=[text_column, label_column]) | |
| if sample: | |
| df = df.sample(min(sample, df.shape[0]), random_state=SEED) | |
| with st.spinner(text="Embedding text..."): | |
| embeddings = embed_text(df[text_column].values.tolist(), model) | |
| logger.info("Encoding labels") | |
| encoded_labels = encode_labels(df[label_column]) | |
| with st.spinner("Reducing dimensionality..."): | |
| embeddings_2d = dimensionality_reduction_function(embeddings) | |
| logger.info("Generating figure") | |
| plot = draw_interactive_scatter_plot( | |
| df[text_column].values, embeddings_2d[:, 0], embeddings_2d[:, 1], encoded_labels.values, df[label_column].values, text_column, label_column | |
| ) | |
| return plot | |
| st.title("Perplexity Lenses") | |
| st.write("Visualize text embeddings in 2D using colors to represent perplexity values.") | |
| uploaded_file = st.file_uploader("Choose an csv/tsv file...", type=["csv", "tsv"]) | |
| st.write("Alternatively, select a dataset from the [hub](https://huggingface.co/datasets)") | |
| col1, col2, col3 = st.columns(3) | |
| with col1: | |
| hub_dataset = st.text_input("Dataset name", "mc4") | |
| with col2: | |
| hub_dataset_config = st.text_input("Dataset configuration", "es") | |
| with col3: | |
| hub_dataset_split = st.text_input("Dataset split", "train") | |
| text_column = st.text_input("Text column name", "text") | |
| language = st.selectbox("Language", LANGUAGES, 12) | |
| sample = st.number_input("Maximum number of documents to use", 1, 100000, 1000) | |
| dimensionality_reduction = st.selectbox("Dimensionality Reduction algorithm", DIMENSIONALITY_REDUCTION_ALGORITHMS, 0) | |
| model_name = st.selectbox("Sentence embedding model", EMBEDDING_MODELS, 0) | |
| with st.spinner(text="Loading embedding model..."): | |
| model = load_model(model_name) | |
| dimensionality_reduction_function = ( | |
| partial(get_umap_embeddings, random_state=SEED) if dimensionality_reduction == "UMAP" else partial(get_tsne_embeddings, random_state=SEED) | |
| ) | |
| with st.spinner(text="Loading KenLM model..."): | |
| kenlm_model = KenlmModel.from_pretrained(language) | |
| if uploaded_file or hub_dataset: | |
| with st.spinner("Loading dataset..."): | |
| if uploaded_file: | |
| df = uploaded_file_to_dataframe(uploaded_file) | |
| df["perplexity"] = df[text_column].map(kenlm_model.get_perplexity) | |
| else: | |
| df = hub_dataset_to_dataframe(hub_dataset, hub_dataset_config, hub_dataset_split, sample, text_column, kenlm_model, seed=SEED) | |
| plot = generate_plot(df, text_column, "perplexity", sample, dimensionality_reduction_function, model) | |
| logger.info("Displaying plot") | |
| st.bokeh_chart(plot) | |
| logger.info("Done") | |