import gradio as gr import google.generativeai as genai import os # Setup GOOGLE_AI_STUDIO = os.environ.get('GOOGLE_AI_STUDIO2') genai.configure(api_key=GOOGLE_AI_STUDIO) # Model initialization model = genai.GenerativeModel('gemini-pro') def get_response(query): """ Searches for content based on the provided query using the Gemini model. Handles DeadlineExceeded exceptions from the Google API. Args: query (str): The search query. Returns: str: The response text from the Gemini model or an error message. """ try: response = model.generate_content(query) return response.text except exceptions.DeadlineExceeded as e: # Handle the DeadlineExceeded exception here print("Error: Deadline Exceeded -", str(e)) # You can return a custom message or take other appropriate actions return "Error: The request timed out. Please try again later." # Gradio interface iface = gr.Interface( fn=get_response, inputs=gr.Textbox(label="Enter your query"), outputs=gr.Textbox(label="Response"), title="AI Content Generator", description="Enter a query to generate content using Gemini Pro model." ) iface.launch()