Spaces:
Runtime error
Runtime error
File size: 13,237 Bytes
f9a9b57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
# app.py
# Character-level text generator with PyTorch (RNN/LSTM/GRU) + Gradio UI
import io
import math
import time
import random
import numpy as np
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import gradio as gr
# -----------------------
# Utilities
# -----------------------
def set_seed(seed: int = 42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
set_seed(42)
def pick_device(force_cpu: bool = False):
if not force_cpu and torch.cuda.is_available():
return torch.device("cuda")
return torch.device("cpu")
def text_from_file(f):
if f is None:
return ""
name = getattr(f, "name", None)
try:
# Try to read as bytes then decode safely
raw = f.read()
if isinstance(raw, bytes):
try:
return raw.decode("utf-8")
except UnicodeDecodeError:
return raw.decode("latin-1", errors="ignore")
return str(raw)
except Exception:
# Fallback: if it's a path-like
if name:
try:
with open(name, "rb") as fh:
raw = fh.read()
try:
return raw.decode("utf-8")
except UnicodeDecodeError:
return raw.decode("latin-1", errors="ignore")
except Exception:
return ""
return ""
def build_vocab(text: str):
chars = sorted(list(set(text)))
stoi = {ch: i for i, ch in enumerate(chars)}
itos = {i: ch for ch, i in stoi.items()}
return stoi, itos, len(chars)
def encode(text: str, stoi: dict):
return torch.tensor([stoi[c] for c in text], dtype=torch.long)
def decode(indices, itos: dict):
return "".join([itos[int(i)] for i in indices])
def make_batches(data_ids: torch.Tensor, seq_len: int, batch_size: int):
# data_ids: shape [T]
total_len = data_ids.size(0)
num_sequences = (total_len - 1) // seq_len
if num_sequences <= 0:
return []
# Trim so we have full sequences
trimmed = num_sequences * seq_len
x = data_ids[:trimmed]
y = data_ids[1:trimmed + 1]
x = x.view(num_sequences, seq_len)
y = y.view(num_sequences, seq_len)
# Shuffle sequence order
perm = torch.randperm(num_sequences)
x = x[perm]
y = y[perm]
# Batch into mini-batches
batches = []
for i in range(0, num_sequences, batch_size):
xb = x[i:i + batch_size]
yb = y[i:i + batch_size]
if xb.size(0) == batch_size: # keep full batches only for simplicity
batches.append((xb, yb))
return batches
# -----------------------
# Model
# -----------------------
class CharRNN(nn.Module):
def __init__(self, vocab_size: int, embed_dim: int, hidden_size: int, num_layers: int, cell_type: str = "LSTM", dropout: float = 0.0):
super().__init__()
assert cell_type in {"RNN", "LSTM", "GRU"}
self.vocab_size = vocab_size
self.embed = nn.Embedding(vocab_size, embed_dim)
self.cell_type = cell_type
self.hidden_size = hidden_size
self.num_layers = num_layers
if cell_type == "RNN":
self.rnn = nn.RNN(embed_dim, hidden_size, num_layers=num_layers, batch_first=True, dropout=dropout if num_layers > 1 else 0)
elif cell_type == "GRU":
self.rnn = nn.GRU(embed_dim, hidden_size, num_layers=num_layers, batch_first=True, dropout=dropout if num_layers > 1 else 0)
else: # LSTM
self.rnn = nn.LSTM(embed_dim, hidden_size, num_layers=num_layers, batch_first=True, dropout=dropout if num_layers > 1 else 0)
self.fc = nn.Linear(hidden_size, vocab_size)
def forward(self, x, hidden=None):
# x: [B, T]
x = self.embed(x) # [B, T, E]
out, hidden = self.rnn(x, hidden) # out: [B, T, H]
logits = self.fc(out) # [B, T, V]
return logits, hidden
def init_hidden(self, batch_size: int, device):
if self.cell_type == "LSTM":
h0 = torch.zeros(self.num_layers, batch_size, self.hidden_size, device=device)
c0 = torch.zeros(self.num_layers, batch_size, self.hidden_size, device=device)
return (h0, c0)
else:
h0 = torch.zeros(self.num_layers, batch_size, self.hidden_size, device=device)
return h0
# -----------------------
# Training & Generation
# -----------------------
def temperature_sample(logits: torch.Tensor, temperature: float):
# logits: [V]
if temperature <= 0:
# argmax
return int(torch.argmax(logits).item())
probs = torch.softmax(logits / temperature, dim=-1)
return int(torch.multinomial(probs, num_samples=1).item())
def generate_text(model: CharRNN, stoi, itos, prime: str, length: int, temperature: float, device):
if len(prime) == 0:
# start from random char if prime is empty
prime = random.choice(list(stoi.keys()))
model.eval()
# Feed prime to warm up hidden state
input_ids = torch.tensor([[stoi.get(ch, 0) for ch in prime]], dtype=torch.long, device=device)
hidden = model.init_hidden(batch_size=1, device=device)
with torch.no_grad():
logits, hidden = model(input_ids, hidden)
last_char_id = input_ids[0, -1]
generated = [ch for ch in prime]
for _ in range(length):
with torch.no_grad():
# take last timestep logits
last_logits = logits[0, -1, :] # [V]
next_id = temperature_sample(last_logits, temperature)
generated.append(itos[next_id])
# next step
inp = torch.tensor([[next_id]], dtype=torch.long, device=device)
logits, hidden = model(inp, hidden)
return "".join(generated)
def train_one_run(
raw_text: str,
model_type: str = "LSTM",
embed_dim: int = 64,
hidden_size: int = 128,
num_layers: int = 2,
seq_len: int = 64,
batch_size: int = 16,
lr: float = 0.003,
epochs: int = 3,
dropout: float = 0.0,
temperature: float = 0.8,
generate_n_chars: int = 400,
prime_text: str = "The ",
force_cpu: bool = False,
):
t0 = time.time()
# Sanity text
text = raw_text.strip()
if len(text) < max(100, seq_len + 1):
# Provide a small default if not enough text
default = (
"To be, or not to be, that is the question:\n"
"Whether 'tis nobler in the mind to suffer\n"
"The slings and arrows of outrageous fortune,\n"
"Or to take arms against a sea of troubles\n"
"And by opposing end them."
)
text = (text + "\n" + default).strip()
stoi, itos, vocab_size = build_vocab(text)
data_ids = encode(text, stoi)
device = pick_device(force_cpu=force_cpu)
model = CharRNN(
vocab_size=vocab_size,
embed_dim=embed_dim,
hidden_size=hidden_size,
num_layers=num_layers,
cell_type=model_type,
dropout=dropout,
).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
losses = []
model.train()
for ep in range(1, epochs + 1):
batches = make_batches(data_ids, seq_len=seq_len, batch_size=batch_size)
if len(batches) == 0:
raise ValueError("Not enough data to make at least one full batch. Increase text length or reduce seq_len/batch_size.")
ep_loss = 0.0
count = 0
for xb, yb in batches:
xb = xb.to(device) # [B, T]
yb = yb.to(device) # [B, T]
hidden = model.init_hidden(batch_size=xb.size(0), device=device)
optimizer.zero_grad()
logits, _ = model(xb, hidden) # [B, T, V]
# Reshape for CE loss
B, T, V = logits.shape
loss = criterion(logits.view(B * T, V), yb.view(B * T))
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
ep_loss += loss.item()
count += 1
mean_loss = ep_loss / max(count, 1)
losses.append(mean_loss)
train_time = time.time() - t0
# Generate
gen = generate_text(
model=model,
stoi=stoi,
itos=itos,
prime=prime_text,
length=generate_n_chars,
temperature=temperature,
device=device,
)
# Plot loss curve
fig = plt.figure(figsize=(5, 3.2), dpi=140)
xs = np.arange(1, len(losses) + 1)
plt.plot(xs, losses, marker="o")
plt.xlabel("Epoch")
plt.ylabel("Training Loss")
plt.title("Loss per Epoch")
plt.tight_layout()
# Hyperparameters summary (to show clearly in UI)
hparams = {
"model_type": model_type,
"embed_dim": embed_dim,
"hidden_size": hidden_size,
"num_layers": num_layers,
"seq_len": seq_len,
"batch_size": batch_size,
"learning_rate": lr,
"epochs": epochs,
"dropout": dropout,
"temperature": temperature,
"generate_n_chars": generate_n_chars,
"vocab_size": vocab_size,
"device": str(device),
"train_time_sec": round(train_time, 3),
"num_batches_per_epoch": len(make_batches(data_ids, seq_len, batch_size)),
"text_len": len(text),
}
return gen, fig, hparams
# -----------------------
# Gradio Interface
# -----------------------
EXAMPLE_TEXT = (
"In the beginning God created the heaven and the earth. "
"And the earth was without form, and void; and darkness was upon the face of the deep. "
"And the Spirit of God moved upon the face of the waters. "
"And God said, Let there be light: and there was light."
)
with gr.Blocks(title="PyTorch RNN/LSTM/GRU Text Generator") as demo:
gr.Markdown(
"""# 🔠 PyTorch Character RNN / LSTM / GRU
Train a tiny character-level model on your text and generate new text.
Use the controls below to **show & tweak hyperparameters**, provide **input text**, and view **outputs** (generated text + loss curve).
"""
)
with gr.Row():
with gr.Column():
corpus = gr.Textbox(
label="Training Text (paste here)",
value=EXAMPLE_TEXT,
lines=10,
placeholder="Paste training text here… (longer is better)"
)
upload = gr.File(label="Or upload a .txt file (optional)", file_count="single")
prime_text = gr.Textbox(label="Prime text (seed for generation)", value="The ", lines=1)
with gr.Row():
model_type = gr.Radio(choices=["LSTM", "GRU", "RNN"], value="LSTM", label="Model type")
force_cpu = gr.Checkbox(value=False, label="Force CPU (uncheck to use GPU if available)")
with gr.Accordion("Hyperparameters", open=True):
with gr.Row():
embed_dim = gr.Slider(16, 256, value=64, step=1, label="Embedding Dim")
hidden_size = gr.Slider(32, 512, value=128, step=1, label="Hidden Size")
with gr.Row():
num_layers = gr.Slider(1, 4, value=2, step=1, label="Layers")
dropout = gr.Slider(0.0, 0.6, value=0.0, step=0.05, label="Dropout")
with gr.Row():
seq_len = gr.Slider(16, 256, value=64, step=1, label="Sequence Length")
batch_size = gr.Slider(4, 128, value=16, step=1, label="Batch Size")
with gr.Row():
lr = gr.Number(value=0.003, precision=6, label="Learning Rate")
epochs = gr.Slider(1, 15, value=3, step=1, label="Epochs")
with gr.Row():
temperature = gr.Slider(0.0, 1.5, value=0.8, step=0.05, label="Temperature (sampling)")
generate_n_chars = gr.Slider(50, 1000, value=400, step=10, label="Generate N Chars")
run_btn = gr.Button("🚀 Train & Generate", variant="primary")
with gr.Column():
gen_text = gr.Textbox(label="Generated Text (output)", lines=20)
loss_plot = gr.Plot(label="Training Loss")
hparams_json = gr.JSON(label="Hyperparameters (for your records)")
def run_pipeline(corpus_text, uploaded_file, **kwargs):
merged = (text_from_file(uploaded_file) + "\n" + (corpus_text or "")).strip() if uploaded_file else (corpus_text or "")
out_text, fig, hp = train_one_run(raw_text=merged, **kwargs)
return out_text, fig, hp
run_btn.click(
run_pipeline,
inputs=[
corpus, upload,
{"label": "model_type"},
{"label": "embed_dim"},
{"label": "hidden_size"},
{"label": "num_layers"},
{"label": "seq_len"},
{"label": "batch_size"},
{"label": "lr"},
{"label": "epochs"},
{"label": "dropout"},
{"label": "temperature"},
{"label": "generate_n_chars"},
prime_text,
force_cpu
],
outputs=[gen_text, loss_plot, hparams_json],
queue=False
)
if __name__ == "__main__":
demo.launch()
|