Spaces:
Running
Running
File size: 9,931 Bytes
447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a 03316a2 447225a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import io
import os
from typing import List, Tuple, Union
import gradio as gr
import nltk
# --- NLTK resources (cover both old & new names) -----------------------------
NLTK_PACKAGES = [
# Tokenizers
"punkt", "punkt_tab",
# Stopwords / Lemmas
"stopwords", "wordnet", "omw-1.4",
# POS taggers (old and new english-specific)
"averaged_perceptron_tagger", "averaged_perceptron_tagger_eng",
# NE chunkers (old and new)
"maxent_ne_chunker", "maxent_ne_chunker_tab",
# Word lists used by NE chunker
"words",
]
def ensure_nltk_resources() -> str:
messages = []
for pkg in NLTK_PACKAGES:
try:
# try to find generically
nltk.download(pkg, quiet=True) # idempotent
messages.append(f"OK: {pkg}")
except Exception as e:
messages.append(f"Failed {pkg}: {e}")
return " | ".join(messages) if messages else "Resources checked."
# Safe imports after downloads (works even if already present)
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer, WordNetLemmatizer
from nltk import pos_tag
from nltk.chunk import ne_chunk
# --- Helpers -----------------------------------------------------------------
def _read_bytes(path: str) -> bytes:
with open(path, "rb") as f:
return f.read()
def read_file(upload: Union[str, gr.File]) -> str:
"""
Reads text from Gradio's File input. Supports .txt and .docx.
Works whether `upload` is a path (str) or a file-like with .name/.read().
"""
if upload is None:
return ""
# Normalize to path + bytes
if isinstance(upload, str):
path = upload
name = os.path.basename(path)
ext = os.path.splitext(name)[1].lower()
content = _read_bytes(path)
else:
# gradio might pass a tempfile object or dict-like
name = getattr(upload, "name", "") or ""
path = getattr(upload, "name", None)
ext = os.path.splitext(name)[1].lower()
try:
# Some envs require reading from disk instead of .read()
if path and os.path.exists(path):
content = _read_bytes(path)
else:
content = upload.read()
except Exception:
# last-resort: try path again
if path and os.path.exists(path):
content = _read_bytes(path)
else:
return "ERROR: Could not read uploaded file."
if ext == ".txt":
for enc in ("utf-8", "latin-1", "utf-16"):
try:
return content.decode(enc)
except UnicodeDecodeError:
continue
return "ERROR: Could not decode text file. Try UTF-8 or plain text."
if ext == ".docx":
try:
import docx # python-docx
except ImportError:
return "ERROR: python-docx not installed. Add 'python-docx' to requirements.txt."
f = io.BytesIO(content)
doc = docx.Document(f)
return "\n".join(p.text for p in doc.paragraphs)
return f"Unsupported file type: {ext}. Please upload .txt or .docx."
def extract_ner(ne_tree) -> List[Tuple[str, str]]:
entities = []
for subtree in ne_tree:
if hasattr(subtree, "label"):
label = subtree.label()
text = " ".join(token for token, _ in subtree.leaves())
entities.append((text, label))
return entities
# --- Core processing ----------------------------------------------------------
def process_text(raw_text: str, steps: List[str]) -> str:
if not raw_text or raw_text.strip() == "":
return "⚠️ No text provided."
# Make sure required resources exist (quietly)
ensure_nltk_resources()
report_lines = []
text = raw_text
tokens = None
filtered_tokens = None
stemmed_tokens = None
lemmatized_tokens = None
pos_tags_val = None
# 1) Tokenize (also needed by later steps)
if "Tokenize text." in steps or any(
s in steps for s in [
"Remove stopwords.", "Stem words.", "Lemmatize words.",
"Tag parts of speech.", "Extract named entities."
]
):
tokens = word_tokenize(text)
if "Tokenize text." in steps:
report_lines.append("### Tokens")
report_lines.append(f"`{tokens}`\n")
# 2) Stopwords
filtered_tokens = tokens
if "Remove stopwords." in steps:
sw = set(stopwords.words("english"))
filtered_tokens = [w for w in (tokens or []) if w.lower() not in sw]
report_lines.append("### After Stopword Removal")
report_lines.append(f"`{filtered_tokens}`\n")
# 3) Stemming
stemmed_tokens = filtered_tokens
if "Stem words." in steps:
stemmer = PorterStemmer()
stemmed_tokens = [stemmer.stem(w) for w in (filtered_tokens or [])]
report_lines.append("### Stemmed Tokens (Porter)")
report_lines.append(f"`{stemmed_tokens}`\n")
# 4) Lemmatization (use filtered tokens so lemmatization compares apples)
lemmatized_tokens = stemmed_tokens if stemmed_tokens is not None else filtered_tokens
if "Lemmatize words." in steps:
lemmatizer = WordNetLemmatizer()
# If you prefer POS-aware lemmas, we could pass pos=... after tagging
lemmatized_tokens = [lemmatizer.lemmatize(w) for w in (filtered_tokens or [])]
report_lines.append("### Lemmatized Tokens (WordNet)")
report_lines.append(f"`{lemmatized_tokens}`\n")
# 5) POS Tagging
if "Tag parts of speech." in steps or "Extract named entities." in steps:
base_for_tagging = lemmatized_tokens if lemmatized_tokens is not None else (tokens or [])
pos_tags_val = pos_tag(base_for_tagging)
if "Tag parts of speech." in steps:
report_lines.append("### Part-of-Speech Tags")
rows = ["| Token | POS |", "|---|---|"]
rows += [f"| {t} | {p} |" for (t, p) in pos_tags_val]
report_lines.append("\n".join(rows) + "\n")
# 6) NER
if "Extract named entities." in steps:
if not pos_tags_val:
base_for_tagging = lemmatized_tokens if lemmatized_tokens is not None else (tokens or [])
pos_tags_val = pos_tag(base_for_tagging)
ne_tree = ne_chunk(pos_tags_val, binary=False)
ner_pairs = extract_ner(ne_tree)
report_lines.append("### Named Entities")
if ner_pairs:
rows = ["| Entity | Label |", "|---|---|"]
rows += [f"| {ent} | {lbl} |" for (ent, lbl) in ner_pairs]
report_lines.append("\n".join(rows) + "\n")
else:
report_lines.append("_No named entities found._\n")
return "\n".join(report_lines).strip() or "No steps selected."
# --- Gradio UI ---------------------------------------------------------------
MENU = [
"Install and download required resources.",
"Tokenize text.",
"Remove stopwords.",
"Stem words.",
"Lemmatize words.",
"Tag parts of speech.",
"Extract named entities.",
]
DEFAULT_TEXT = (
"NLTK is a powerful library for text processing. "
"Barack Obama served as the 44th President of the United States and lived in Washington, D.C."
)
with gr.Blocks(title="NLTK Text Processing Toolkit") as demo:
gr.Markdown("# NLTK Text Processing Toolkit")
gr.Markdown(
"Type or paste text, or drop a `.txt`/`.docx` file. "
"Select steps and click **Process**. Use **Install/Download Resources** if needed."
)
with gr.Row():
with gr.Column():
text_in = gr.Textbox(
label="Text Input",
lines=10,
value=DEFAULT_TEXT,
placeholder="Type or paste text here..."
)
file_in = gr.File(
label="...or drop a .txt / .docx file",
file_types=[".txt", ".docx"]
)
steps_in = gr.CheckboxGroup(
choices=MENU,
value=[
"Tokenize text.",
"Remove stopwords.",
"Lemmatize words.",
"Tag parts of speech.",
"Extract named entities.",
],
label="Menu (choose one or more)"
)
with gr.Row():
install_btn = gr.Button("Install/Download Resources")
process_btn = gr.Button("Process", variant="primary")
with gr.Column():
status_out = gr.Textbox(label="Status / Logs", interactive=False)
result_out = gr.Markdown(label="Results")
# Button callbacks
def on_install():
try:
return ensure_nltk_resources()
except Exception as e:
return f"Install error: {e}"
def on_process(text, file, steps):
try:
# Prefer typed text unless it's empty; otherwise use file
text = (text or "").strip()
file_text = read_file(file) if file is not None else ""
if not text and file_text:
text = file_text
if file_text.startswith("ERROR:") or file_text.startswith("Unsupported file type:"):
return file_text
return process_text(text, steps or [])
except Exception as e:
# Surface Python exceptions to the UI so it never looks like “nothing happened”
import traceback
return "### Error\n```\n" + "".join(traceback.format_exc()) + "\n```"
install_btn.click(fn=on_install, inputs=None, outputs=status_out)
process_btn.click(fn=on_process, inputs=[text_in, file_in, steps_in], outputs=result_out)
# Optional: pre-download on load so first click never fails silently
demo.load(lambda: ensure_nltk_resources(), inputs=None, outputs=status_out)
if __name__ == "__main__":
demo.launch()
|