eaglelandsonce commited on
Commit
cae0e49
·
verified ·
1 Parent(s): 64a2bf5

Update index.html

Browse files
Files changed (1) hide show
  1. index.html +14 -22
index.html CHANGED
@@ -94,39 +94,31 @@
94
  <div id="score">Score: 0</div>
95
 
96
  <script>
97
- const categories = [
98
- "Generative AI Fundamentals",
99
- "Machine Learning & Deep Learning",
100
- "Foundation Models & Transformers",
101
- "Vector Embeddings & LLMs",
102
- "AI Risks & Hallucinations"
103
- ];
104
-
105
  const questions = [
106
  [
107
  { q: "What is Generative AI?", a: ["AI that creates new data similar to training data", "A rule-based expert system", "A basic search algorithm"], correct: 0 },
108
- { q: "Which area of AI does Generative AI belong to?", a: ["Deep Learning", "Symbolic AI", "Database Management"], correct: 1 },
109
- { q: "What problem does Generative AI solve?", a: ["Inverse problem of classification", "Sorting algorithms", "Data compression"], correct: 2 }
110
  ],
111
  [
112
- { q: "What is the primary difference between Discriminative and Generative models?", a: ["Generative models learn data distribution", "Discriminative models generate new data", "They are identical"], correct: 0 },
113
- { q: "Which is NOT an example of a foundation model?", a: ["Linear Regression", "GPT-4", "BERT"], correct: 1 },
114
- { q: "Which ML technique is used to train Generative AI?", a: ["Supervised Learning", "Unsupervised Learning", "Linear Regression"], correct: 2 }
115
  ],
116
  [
117
- { q: "What key technology underpins Transformer models?", a: ["Attention Mechanism", "Markov Chains", "Decision Trees"], correct: 0 },
118
- { q: "Which company introduced the Transformer architecture?", a: ["Google", "Microsoft", "OpenAI"], correct: 1 },
119
- { q: "What makes Transformer models scalable?", a: ["Parallelization", "More CPU cores", "Sequential execution"], correct: 2 }
120
  ],
121
  [
122
- { q: "What are vector embeddings used for?", a: ["Representing words numerically", "Sorting files", "Data encryption"], correct: 0 },
123
- { q: "Which method is used to store vector embeddings?", a: ["Vector Databases", "Excel Sheets", "Data Frames"], correct: 1 },
124
- { q: "Which AI model uses vector embeddings heavily?", a: ["Large Language Models (LLMs)", "Decision Trees", "Clustering Models"], correct: 2 }
125
  ],
126
  [
127
- { q: "What is AI hallucination?", a: ["Generating incorrect or fabricated information", "A sleep disorder", "Overfitting"], correct: 0 },
128
- { q: "How can AI hallucinations be reduced?", a: ["Better data and fine-tuning", "Increasing randomness", "Removing training data"], correct: 1 },
129
- { q: "Which is a risk of Generative AI?", a: ["Misinformation", "Better accuracy", "Improved efficiency"], correct: 2 }
130
  ]
131
  ];
132
 
 
94
  <div id="score">Score: 0</div>
95
 
96
  <script>
 
 
 
 
 
 
 
 
97
  const questions = [
98
  [
99
  { q: "What is Generative AI?", a: ["AI that creates new data similar to training data", "A rule-based expert system", "A basic search algorithm"], correct: 0 },
100
+ { q: "Which area of AI does Generative AI belong to?", a: ["Symbolic AI", "Deep Learning", "Database Management"], correct: 1 },
101
+ { q: "What problem does Generative AI solve?", a: ["Sorting algorithms", "Data compression", "Inverse problem of classification"], correct: 2 }
102
  ],
103
  [
104
+ { q: "What is the primary difference between Discriminative and Generative models?", a: ["Discriminative models generate new data", "They are identical", "Generative models learn data distribution"], correct: 2 },
105
+ { q: "Which is NOT an example of a foundation model?", a: ["GPT-4", "BERT", "Linear Regression"], correct: 2 },
106
+ { q: "Which ML technique is used to train Generative AI?", a: ["Linear Regression", "Unsupervised Learning", "Supervised Learning"], correct: 2 }
107
  ],
108
  [
109
+ { q: "What key technology underpins Transformer models?", a: ["Markov Chains", "Decision Trees", "Attention Mechanism"], correct: 2 },
110
+ { q: "Which company introduced the Transformer architecture?", a: ["Microsoft", "OpenAI", "Google"], correct: 2 },
111
+ { q: "What makes Transformer models scalable?", a: ["More CPU cores", "Sequential execution", "Parallelization"], correct: 2 }
112
  ],
113
  [
114
+ { q: "What are vector embeddings used for?", a: ["Sorting files", "Representing words numerically", "Data encryption"], correct: 1 },
115
+ { q: "Which method is used to store vector embeddings?", a: ["Excel Sheets", "Vector Databases", "Data Frames"], correct: 1 },
116
+ { q: "Which AI model uses vector embeddings heavily?", a: ["Clustering Models", "Large Language Models (LLMs)", "Decision Trees"], correct: 1 }
117
  ],
118
  [
119
+ { q: "What is AI hallucination?", a: ["Overfitting", "A sleep disorder", "Generating incorrect or fabricated information"], correct: 2 },
120
+ { q: "How can AI hallucinations be reduced?", a: ["Better data and fine-tuning", "Removing training data", "Increasing randomness"], correct: 0 },
121
+ { q: "Which is a risk of Generative AI?", a: ["Better accuracy", "Improved efficiency", "Misinformation"], correct: 2 }
122
  ]
123
  ];
124