Lab2_Extension / app.py
eaglelandsonce's picture
Create app.py
3dd7df6 verified
raw
history blame
8.09 kB
import os
import tempfile
import gradio as gr
# Azure AI Agents SDK
from azure.core.credentials import AzureKeyCredential
from azure.ai.agents import AgentsClient
from azure.ai.agents.models import (
FilePurpose,
CodeInterpreterTool,
ListSortOrder,
MessageRole,
)
def init_agent(endpoint: str, api_key: str, model_deployment: str, data_file) -> dict:
"""
Initialize an Azure AI Agent with optional data file for the Code Interpreter.
Returns a session dict with client, agent, thread, and bookkeeping.
"""
if not endpoint or not api_key or not model_deployment:
raise ValueError("Please provide endpoint, key, and model deployment name.")
# Create client (API key auth)
client = AgentsClient(
endpoint=endpoint.strip(),
credential=AzureKeyCredential(api_key.strip()),
)
# Create a temporary file path if a file is provided
temp_path = None
if data_file is not None:
# Gradio gives a tempfile-like object; persist it to a path for upload
with tempfile.NamedTemporaryFile(delete=False) as tmp:
tmp.write(data_file.read())
temp_path = tmp.name
with client:
code_interpreter = None
if temp_path:
# Upload file for agent use
up = client.files.upload_and_poll(file_path=temp_path, purpose=FilePurpose.AGENTS)
# Create the tool bound to this file
code_interpreter = CodeInterpreterTool(file_ids=[up.id])
# Define the agent (attach tools if we created one)
agent = client.create_agent(
model=model_deployment,
name="data-agent",
instructions=(
"You are an AI agent that analyzes the uploaded data when present. "
"Use Python via the Code Interpreter to compute statistical metrics or produce "
"text-based charts when asked. If no file is provided, proceed with normal reasoning."
),
tools=(code_interpreter.definitions if code_interpreter else None),
tool_resources=(code_interpreter.resources if code_interpreter else None),
)
# Create a thread for the conversation
thread = client.threads.create()
# Keep the client open for subsequent calls (no context manager here)
session = {
"endpoint": endpoint.strip(),
"api_key": api_key.strip(),
"model": model_deployment.strip(),
"client": client,
"agent_id": agent.id,
"thread_id": thread.id,
"has_file": data_file is not None,
"temp_path": temp_path, # to clean up later if we want
}
return session
def send_message(user_msg: str, session: dict):
"""
Send a user message to the existing thread and return the agent's latest reply
as well as a printable conversation history.
"""
if not session or "client" not in session:
raise ValueError("Agent is not initialized. Click 'Connect & Prepare' first.")
client: AgentsClient = session["client"]
agent_id = session["agent_id"]
thread_id = session["thread_id"]
# Create the user message on the thread
client.messages.create(
thread_id=thread_id,
role="user",
content=user_msg,
)
# Run the agent on the thread and wait for completion
run = client.runs.create_and_process(thread_id=thread_id, agent_id=agent_id)
if getattr(run, "status", None) == "failed":
last_error = getattr(run, "last_error", "Unknown error")
return f"Run failed: {last_error}", ""
# Get the last agent message text
last_msg = client.messages.get_last_message_text_by_role(
thread_id=thread_id,
role=MessageRole.AGENT,
)
agent_reply = last_msg.text.value if last_msg else "(No reply text found.)"
# Build a readable conversation history
history_lines = []
messages = client.messages.list(thread_id=thread_id, order=ListSortOrder.ASCENDING)
for m in messages:
if m.text_messages:
last_text = m.text_messages[-1].text.value
history_lines.append(f"{m.role}: {last_text}")
history_str = "\n\n".join(history_lines)
return agent_reply, history_str
def teardown(session: dict):
"""
Delete the agent (and optionally the temp file) to avoid unnecessary Azure costs.
Note: Threads are retained by service; you can delete agents to clean up.
"""
if not session:
return "Nothing to clean up."
msg = []
try:
client: AgentsClient = session.get("client")
if client:
with client:
agent_id = session.get("agent_id")
if agent_id:
client.delete_agent(agent_id)
msg.append("Deleted agent.")
except Exception as e:
msg.append(f"Cleanup warning: {e}")
# Remove temp file if created
try:
temp_path = session.get("temp_path")
if temp_path and os.path.exists(temp_path):
os.remove(temp_path)
msg.append("Removed temp file.")
except Exception as e:
msg.append(f"Temp cleanup warning: {e}")
return " ".join(msg) if msg else "Cleanup complete."
# ----------------- Gradio UI -----------------
with gr.Blocks(title="Azure AI Agent (Endpoint+Key) — Gradio") as demo:
gr.Markdown(
"## Azure AI Agent (Code Interpreter Ready)\n"
"Enter your **Project Endpoint** and **Key**, select your **Model Deployment** (e.g., `gpt-4o`), "
"optionally upload a data file (CSV/TXT), then chat.\n"
"Click **Connect & Prepare** once, then send prompts in the chat."
)
with gr.Row():
endpoint = gr.Textbox(label="Project Endpoint", placeholder="https://<your-project-endpoint>")
api_key = gr.Textbox(label="Project Key", placeholder="paste your key", type="password")
with gr.Row():
model = gr.Textbox(label="Model Deployment Name", value="gpt-4o")
data_file = gr.File(label="Optional data file for Code Interpreter (txt/csv)", file_types=[".txt", ".csv"], type="binary")
session_state = gr.State(value=None)
connect_btn = gr.Button("🔌 Connect & Prepare Agent", variant="primary")
connect_status = gr.Markdown("")
with gr.Row():
chatbot = gr.Chatbot(height=420, label="Conversation").style(height=420)
user_input = gr.Textbox(label="Your message", placeholder="Ask a question or request a chart…")
with gr.Row():
send_btn = gr.Button("Send ▶")
cleanup_btn = gr.Button("Delete Agent & Cleanup 🧹")
history = gr.Textbox(label="Conversation Log (chronological)", lines=12)
# Callbacks
def on_connect(ep, key, mdl, f):
try:
sess = init_agent(ep, key, mdl, f)
return sess, "✅ Connected. Agent and thread are ready."
except Exception as e:
return None, f"❌ Connection error: {e}"
connect_btn.click(
fn=on_connect,
inputs=[endpoint, api_key, model, data_file],
outputs=[session_state, connect_status],
)
def on_send(msg, session, chat_hist):
if not msg:
return gr.update(), chat_hist, gr.update(value="Please enter a message.")
try:
reply, log = send_message(msg, session)
chat_hist = (chat_hist or []) + [[msg, reply]]
return chat_hist, chat_hist, gr.update(value=log)
except Exception as e:
return chat_hist, chat_hist, gr.update(value=f"❌ Error: {e}")
send_btn.click(
fn=on_send,
inputs=[user_input, session_state, chatbot],
outputs=[chatbot, chatbot, history],
)
def on_cleanup(session):
try:
msg = teardown(session)
return None, f"🧹 {msg}"
except Exception as e:
return session, f"⚠️ Cleanup error: {e}"
cleanup_btn.click(
fn=on_cleanup,
inputs=[session_state],
outputs=[session_state, connect_status],
)
if __name__ == "__main__":
demo.launch()