eaglelandsonce commited on
Commit
2f79527
·
verified ·
1 Parent(s): 60de707

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -7
app.py CHANGED
@@ -1,11 +1,18 @@
1
  import streamlit as st
2
- from clarifai.client.model import Model
3
- import base64
4
  from PIL import Image
5
  from io import BytesIO
 
6
 
 
7
  PAT = '96eccae9a5944c1097477f0529306410'
8
 
 
 
 
 
 
 
9
  # Streamlit page configuration
10
  st.title('Image Generation with Clarifai')
11
  st.write('Enter a prompt and generate an image.')
@@ -15,11 +22,11 @@ user_input = st.text_input('Enter your image prompt')
15
 
16
  # Process the input when a prompt is given
17
  if user_input:
18
- # Your existing code with slight modifications
19
- inference_params = dict(guidance_scale = "medium")
20
- model_prediction = Model("https://clarifai.com/stability-ai/stable-diffusion-2/models/stable-diffusion-xl").predict_by_bytes(user_input.encode(), input_type="text", inference_params=inference_params)
21
 
22
- output_base64 = model_prediction.outputs[0].data.image.base64
 
23
 
24
  # Convert base64 to PIL Image
25
  image_data = base64.b64decode(output_base64)
@@ -29,4 +36,4 @@ if user_input:
29
  st.image(image, caption='Generated Image', use_column_width=True)
30
 
31
  # Optional: Print additional image info
32
- st.write(model_prediction.outputs[0].data.image.image_info)
 
1
  import streamlit as st
2
+ from clarifai.rest import ClarifaiApp
 
3
  from PIL import Image
4
  from io import BytesIO
5
+ import base64
6
 
7
+ # Your Personal Access Token
8
  PAT = '96eccae9a5944c1097477f0529306410'
9
 
10
+ # Initialize Clarifai app
11
+ app = ClarifaiApp(api_key=PAT)
12
+
13
+ # Specify the model ID (replace 'YOUR_MODEL_ID' with the actual model ID)
14
+ model = app.models.get('YOUR_MODEL_ID')
15
+
16
  # Streamlit page configuration
17
  st.title('Image Generation with Clarifai')
18
  st.write('Enter a prompt and generate an image.')
 
22
 
23
  # Process the input when a prompt is given
24
  if user_input:
25
+ # Get model prediction
26
+ model_prediction = model.predict_by_bytes(user_input.encode(), input_type="text")
 
27
 
28
+ # Extract the image data
29
+ output_base64 = model_prediction['outputs'][0]['data']['image']['base64']
30
 
31
  # Convert base64 to PIL Image
32
  image_data = base64.b64decode(output_base64)
 
36
  st.image(image, caption='Generated Image', use_column_width=True)
37
 
38
  # Optional: Print additional image info
39
+ st.write(model_prediction['outputs'][0]['data']['image']['image_info'])