Spaces:
Build error
Build error
File size: 9,553 Bytes
8b593b6 14e8dc8 12b1ff0 a98c1b4 440a9cf 14e8dc8 35b62b6 afdd574 ae3526d b57b1fa b3f1c98 01901e0 788e7b9 01901e0 8ab1139 14e8dc8 fad460a 14e8dc8 fad460a 14e8dc8 8b593b6 a98c1b4 8b593b6 0010fba 14e8dc8 0010fba 8b593b6 14e8dc8 5d61ee6 14e8dc8 749fd07 8f5bff6 0010fba 30e2b7a 0010fba 30e2b7a b57b1fa 30e2b7a a3d08aa ae3526d 14e8dc8 0010fba 14e8dc8 0010fba def6d9f 0010fba def6d9f 0010fba eddde63 def6d9f a551f8d 69713ba df9f997 afdd574 df9f997 c6b250a 366190c cdd2ded def6d9f 524a7b5 8c48a8e eca3c3a 64021df eca3c3a b3f1c98 7709d6e 0010fba df9f997 59368b0 749fd07 59368b0 749fd07 14e8dc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# imports go here
import openai
import os
import base64
import glob
import json
import mistune
import pytz
import math
import requests
from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
from audio_recorder_streamlit import audio_recorder
import streamlit as st
if 'text_content' not in st.session_state:
st.session_state.text_content = ''
st.set_page_config(page_title="Chat Toolkit",layout="wide")
with st.sidebar.expander("Model Options", expanded=False):
menu = ["htm", "txt", "md"]
choice = st.selectbox("Output File Type:", menu)
model_choice = st.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-4'))
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%I%M")
safe_prompt = "".join(x for x in prompt if x.isalnum())[:45]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
def chat_with_model(prompt, document_section):
model = model_choice
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(document_section)>0:
conversation.append({'role': 'assistant', 'content': document_section})
response = openai.ChatCompletion.create(model=model, messages=conversation)
return response
#return response['choices'][0]['message']['content']
def transcribe_audio(openai_key, file_path, model):
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
headers = {
"Authorization": f"Bearer {openai_key}",
}
with open(file_path, 'rb') as f:
data = {'file': f}
# check for correctness - lively addition
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
if response.status_code == 200:
st.write(response.json())
response2 = chat_with_model(response.json().get('text'), '')
st.write('Responses:')
#st.write(response)
st.write(response2)
return response.json().get('text')
else:
st.write(response.json())
st.error("Error in API call.")
return None
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder()
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
return filename
return None
def create_file(filename, prompt, response):
if filename.endswith(".txt"):
with open(filename, 'w') as file:
file.write(f"Prompt:\n{prompt}\nResponse:\n{response}")
elif filename.endswith(".htm"):
with open(filename, 'w') as file:
file.write(f"<h1>Prompt:</h1> <p>{prompt}</p> <h1>Response:</h1> <p>{response}</p>")
elif filename.endswith(".md"):
with open(filename, 'w') as file:
file.write(f"# Prompt:\n{prompt}\n# Response:\n{response}")
def truncate_document(document, length):
return document[:length]
def divide_document(document, max_length):
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
def get_table_download_link(file_path):
with open(file_path, 'r') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1] # get the file extension
if ext == '.txt':
mime_type = 'text/plain'
elif ext == '.py':
mime_type = 'text/plain'
elif ext == '.xlsx':
mime_type = 'text/plain'
elif ext == '.csv':
mime_type = 'text/plain'
elif ext == '.htm':
mime_type = 'text/html'
elif ext == '.md':
mime_type = 'text/markdown'
else:
mime_type = 'application/octet-stream' # general binary data type
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
return href
def CompressXML(xml_text):
root = ET.fromstring(xml_text)
for elem in list(root.iter()):
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
elem.parent.remove(elem)
return ET.tostring(root, encoding='unicode', method="xml")
def read_file_content(file,max_length):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html" or file.type == "text/htm":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
tree = ET.parse(file)
root = tree.getroot()
xml = CompressXML(ET.tostring(root, encoding='unicode'))
return xml
elif file.type == "text/markdown" or file.type == "text/md":
md = mistune.create_markdown()
content = md(file.read().decode())
return content
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
def main():
st.title('Chat Toolkit')
api_key = st.sidebar.text_input("Enter OpenAI API Key:", type='password')
if api_key:
openai.api_key = api_key
my_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
st.session_state.text_content = my_prompt
uploaded_file = st.sidebar.file_uploader("Add a file for context:", type=["xml", "json", "xlsx","csv","html", "htm", "md", "txt"])
max_length = st.sidebar.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
document_sections = deque()
document_responses = {}
if uploaded_file is not None:
file_content = read_file_content(uploaded_file, max_length)
document_sections.extend(divide_document(file_content, max_length))
if len(document_sections) > 0:
if st.button("👁️ View Upload"):
st.markdown("**Sections of the uploaded file:**")
for i, section in enumerate(list(document_sections)):
st.markdown(f"**Section {i+1}**\n{section}")
st.markdown("**Chat with the model:**")
for i, section in enumerate(list(document_sections)):
if i in document_responses:
st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
else:
if st.button(f"Chat about Section {i+1}"):
st.write('Reasoning with your inputs...')
response = chat_with_model(st.session_state.text_content, section)
st.write('Response:')
st.write(response)
document_responses[i] = response
filename = generate_filename(f"{st.session_state.text_content}_section_{i+1}", choice)
create_file(filename, st.session_state.text_content, response)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
st.warning("This is made for rapid entry, so use your return key or command enter (for mac) to run your query, or audio record your prompts.")
if st.session_state.text_content:
st.write('Reasoning with your inputs...')
response = chat_with_model(st.session_state.text_content, ''.join(list(document_sections)))
st.write('Response:')
# Convert the JSON data to a formatted string
json_str = json.dumps(response, indent=4)
# Display the JSON data in a text area
st.text_area("JSON Data:", value=json_str, height=400)
#st.write(response)
filename = generate_filename(st.session_state.text_content, choice)
create_file(filename, st.session_state.text_content, response)
# with st.sidebar.expander("Recording Options", expanded=False):
# Audio, transcribe, GPT:
filename = save_and_play_audio(audio_recorder)
if filename is not None:
transcription = transcribe_audio(openai.api_key, filename, "whisper-1")
st.session_state.text_content = transcription
all_files = glob.glob("*.*")
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
for file in all_files:
col1, col3 = st.sidebar.columns([5,1]) # adjust the ratio as needed
with col1:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("🗑", key="delete_"+file):
os.remove(file)
st.experimental_rerun()
else:
# image and api warning before rest of code
st.warning('Please enter your OpenAI API key in the left sidebar.')
left_col, center_col, right_col = st.columns([1, 6, 1])
with center_col:
st.image('ai2.png', use_column_width=True)
if __name__ == "__main__":
main() |