import os import gradio as gr from openai import OpenAI # --- Configuration --- # Read from environment for safety. Set OPENAI_API_KEY before running. OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") if not OPENAI_API_KEY: raise RuntimeError( "Missing OPENAI_API_KEY. Set it in your environment: " "export OPENAI_API_KEY='sk-...' (Linux/Mac) or " "setx OPENAI_API_KEY \"sk-...\" (Windows)" ) # Optional: override base URL if you use a proxy/self-hosted gateway. # For the standard OpenAI endpoint you can omit base_url entirely. client = OpenAI( api_key=OPENAI_API_KEY, base_url=os.getenv("OPENAI_BASE_URL", "https://api.openai.com/v1") ) # Default system prompt and model; adjust as desired. DEFAULT_SYSTEM_PROMPT = "You are a helpful, concise assistant." DEFAULT_MODEL = os.getenv("OPENAI_MODEL", "gpt-5-chat-latest") # use a current chat model def chat_fn(message, history, system_prompt, temperature, max_tokens): """ Gradio ChatInterface passes: - message: current user message (str) - history: list[tuple[str,str]] of (user, assistant) turns We convert to OpenAI's chat message format and call the Chat Completions API. """ # Build messages: system + alternating user/assistant + latest user messages = [{"role": "system", "content": system_prompt.strip() or DEFAULT_SYSTEM_PROMPT}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) resp = client.chat.completions.create( model=DEFAULT_MODEL, messages=messages, temperature=temperature, max_tokens=max_tokens if max_tokens and max_tokens > 0 else None, ) reply = resp.choices[0].message.content return reply with gr.Blocks(title="OpenAI Chat (Gradio)") as demo: gr.Markdown("## OpenAI Chatbot\nEnter a message below to chat.") with gr.Row(): system_prompt = gr.Textbox( label="System prompt", value=DEFAULT_SYSTEM_PROMPT, lines=2 ) with gr.Row(): temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.1, label="Temperature") max_tokens = gr.Slider(64, 4096, value=512, step=32, label="Max tokens (response)") chat = gr.ChatInterface( fn=lambda msg, hist: chat_fn(msg, hist, system_prompt.value, temperature.value, int(max_tokens.value)), type="messages", # keeps history as list of tuples title="OpenAI Chatbot", retry_btn="Retry", undo_btn="Remove last", clear_btn="Clear", submit_btn="Send" ) if __name__ == "__main__": # You can set server_name="0.0.0.0" if deploying in a container. demo.launch()