Spaces:
Sleeping
Sleeping
EtienneB
commited on
Commit
·
1e05108
1
Parent(s):
7faf23e
updates
Browse files- .gitignore +2 -0
- agent.py +41 -76
- app.py +2 -32
- old-tools.py +71 -0
- requirements.txt +12 -14
- tools.py +0 -68
.gitignore
CHANGED
|
@@ -1,2 +1,4 @@
|
|
| 1 |
.env
|
| 2 |
.venv
|
|
|
|
|
|
|
|
|
| 1 |
.env
|
| 2 |
.venv
|
| 3 |
+
/__pycache__
|
| 4 |
+
/chroma_db
|
agent.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
-
from langchain_community.vectorstores import Chroma
|
| 5 |
from langchain_core.messages import HumanMessage, SystemMessage, ToolMessage
|
| 6 |
from langchain_huggingface import (ChatHuggingFace, HuggingFaceEmbeddings,
|
| 7 |
HuggingFaceEndpoint)
|
|
@@ -12,13 +13,11 @@ from tools import (absolute, add, analyze_csv_file, analyze_excel_file,
|
|
| 12 |
arvix_search, audio_transcription, compound_interest,
|
| 13 |
convert_temperature, divide, exponential,
|
| 14 |
extract_text_from_image, factorial, floor_divide,
|
| 15 |
-
get_current_time_in_timezone,
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
roman_calculator_converter, square_root, subtract,
|
| 21 |
-
web_content_extract, web_search, wiki_search)
|
| 22 |
|
| 23 |
# Load Constants
|
| 24 |
load_dotenv()
|
|
@@ -34,8 +33,7 @@ tools = [
|
|
| 34 |
is_prime, least_common_multiple, percentage_calculator,
|
| 35 |
wiki_search, analyze_excel_file, arvix_search,
|
| 36 |
audio_transcription, python_code_parser, analyze_csv_file,
|
| 37 |
-
extract_text_from_image, reverse_sentence, web_content_extract
|
| 38 |
-
get_max_bird_species_count_from_video
|
| 39 |
]
|
| 40 |
|
| 41 |
# Load system prompt
|
|
@@ -47,54 +45,13 @@ If you are asked for a number, don't use a comma to write your number, nor use u
|
|
| 47 |
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
| 48 |
If you are asked for a comma separated list, apply the above rules depending on whether the element to be put in the list is a number or a string.
|
| 49 |
Format your output as: Answers (answers): [{"task_id": ..., "submitted_answer": ...}]
|
|
|
|
| 50 |
"""
|
| 51 |
|
| 52 |
-
|
| 53 |
# System message
|
| 54 |
sys_msg = SystemMessage(content=system_prompt)
|
| 55 |
|
| 56 |
|
| 57 |
-
def get_vector_store(persist_directory="chroma_db"):
|
| 58 |
-
"""
|
| 59 |
-
Initializes and returns a Chroma vector store.
|
| 60 |
-
If the database exists, it loads it. If not, it creates it,
|
| 61 |
-
adds some initial documents, and persists them.
|
| 62 |
-
"""
|
| 63 |
-
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
| 64 |
-
|
| 65 |
-
if os.path.exists(persist_directory) and os.listdir(persist_directory):
|
| 66 |
-
print("Loading existing vector store...")
|
| 67 |
-
vector_store = Chroma(
|
| 68 |
-
persist_directory=persist_directory,
|
| 69 |
-
embedding_function=embedding_function
|
| 70 |
-
)
|
| 71 |
-
else:
|
| 72 |
-
print("Creating new vector store...")
|
| 73 |
-
os.makedirs(persist_directory, exist_ok=True)
|
| 74 |
-
# Example documents to add
|
| 75 |
-
initial_documents = [
|
| 76 |
-
"The Principle of Double Effect is an ethical theory that distinguishes between the intended and foreseen consequences of an action.",
|
| 77 |
-
"St. Thomas Aquinas is often associated with the development of the Principle of Double Effect.",
|
| 78 |
-
"LangGraph is a library for building stateful, multi-actor applications with LLMs.",
|
| 79 |
-
"Chroma is a vector database used for storing and retrieving embeddings."
|
| 80 |
-
]
|
| 81 |
-
vector_store = Chroma.from_texts(
|
| 82 |
-
texts=initial_documents,
|
| 83 |
-
embedding=embedding_function,
|
| 84 |
-
persist_directory=persist_directory
|
| 85 |
-
)
|
| 86 |
-
# No need to call persist() when using from_texts with a persist_directory
|
| 87 |
-
|
| 88 |
-
return vector_store
|
| 89 |
-
|
| 90 |
-
# --- Initialize Vector Store and Retriever ---
|
| 91 |
-
vector_store = get_vector_store()
|
| 92 |
-
retriever_component = vector_store.as_retriever(
|
| 93 |
-
search_type="mmr", # Use Maximum Marginal Relevance for diverse results
|
| 94 |
-
search_kwargs={'k': 2, 'lambda_mult': 0.5} # Retrieve 2 documents
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
|
| 98 |
def build_graph():
|
| 99 |
"""Build the graph"""
|
| 100 |
# First create the HuggingFaceEndpoint
|
|
@@ -127,32 +84,12 @@ def build_graph():
|
|
| 127 |
formatted = f'Answers (answers): [{{"task_id": "{task_id}", "submitted_answer": "{answer_text}"}}]'
|
| 128 |
return {"messages": [formatted]}
|
| 129 |
|
| 130 |
-
def retriever_node(state: MessagesState):
|
| 131 |
-
"""
|
| 132 |
-
Retrieves relevant documents from the vector store based on the latest human message.
|
| 133 |
-
"""
|
| 134 |
-
last_human_message = state["messages"][-1].content
|
| 135 |
-
retrieved_docs = retriever_component.invoke(last_human_message)
|
| 136 |
-
|
| 137 |
-
if retrieved_docs:
|
| 138 |
-
retrieved_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
|
| 139 |
-
# Create a ToolMessage to hold the retrieved context
|
| 140 |
-
context_message = ToolMessage(
|
| 141 |
-
content=f"Retrieved context from vector store:\n\n{retrieved_context}",
|
| 142 |
-
tool_call_id="retriever" # A descriptive ID
|
| 143 |
-
)
|
| 144 |
-
return {"messages": [context_message]}
|
| 145 |
-
|
| 146 |
-
return {"messages": []}
|
| 147 |
-
|
| 148 |
# --- Graph Definition ---
|
| 149 |
builder = StateGraph(MessagesState)
|
| 150 |
-
# builder.add_node("retriever", retriever_node)
|
| 151 |
builder.add_node("assistant", assistant)
|
| 152 |
builder.add_node("tools", ToolNode(tools))
|
| 153 |
|
| 154 |
builder.add_edge(START, "assistant")
|
| 155 |
-
# builder.add_edge("retriever", "assistant")
|
| 156 |
builder.add_conditional_edges("assistant", tools_condition)
|
| 157 |
builder.add_edge("tools", "assistant")
|
| 158 |
|
|
@@ -160,6 +97,30 @@ def build_graph():
|
|
| 160 |
return builder.compile()
|
| 161 |
|
| 162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
# test
|
| 164 |
if __name__ == "__main__":
|
| 165 |
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
|
@@ -168,8 +129,8 @@ if __name__ == "__main__":
|
|
| 168 |
# Run the graph
|
| 169 |
messages = [HumanMessage(content=question)]
|
| 170 |
# The initial state for the graph
|
| 171 |
-
initial_state = {"messages": messages}
|
| 172 |
-
|
| 173 |
# Invoke the graph stream to see the steps
|
| 174 |
for s in graph.stream(initial_state, stream_mode="values"):
|
| 175 |
message = s["messages"][-1]
|
|
@@ -178,5 +139,9 @@ if __name__ == "__main__":
|
|
| 178 |
print(message.content)
|
| 179 |
print("-----------------------")
|
| 180 |
else:
|
| 181 |
-
message
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
import os
|
| 3 |
+
import re
|
| 4 |
|
| 5 |
from dotenv import load_dotenv
|
|
|
|
| 6 |
from langchain_core.messages import HumanMessage, SystemMessage, ToolMessage
|
| 7 |
from langchain_huggingface import (ChatHuggingFace, HuggingFaceEmbeddings,
|
| 8 |
HuggingFaceEndpoint)
|
|
|
|
| 13 |
arvix_search, audio_transcription, compound_interest,
|
| 14 |
convert_temperature, divide, exponential,
|
| 15 |
extract_text_from_image, factorial, floor_divide,
|
| 16 |
+
get_current_time_in_timezone, greatest_common_divisor,
|
| 17 |
+
is_prime, least_common_multiple, logarithm, modulus,
|
| 18 |
+
multiply, percentage_calculator, power, python_code_parser,
|
| 19 |
+
reverse_sentence, roman_calculator_converter, square_root,
|
| 20 |
+
subtract, web_content_extract, web_search, wiki_search)
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# Load Constants
|
| 23 |
load_dotenv()
|
|
|
|
| 33 |
is_prime, least_common_multiple, percentage_calculator,
|
| 34 |
wiki_search, analyze_excel_file, arvix_search,
|
| 35 |
audio_transcription, python_code_parser, analyze_csv_file,
|
| 36 |
+
extract_text_from_image, reverse_sentence, web_content_extract
|
|
|
|
| 37 |
]
|
| 38 |
|
| 39 |
# Load system prompt
|
|
|
|
| 45 |
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
| 46 |
If you are asked for a comma separated list, apply the above rules depending on whether the element to be put in the list is a number or a string.
|
| 47 |
Format your output as: Answers (answers): [{"task_id": ..., "submitted_answer": ...}]
|
| 48 |
+
Do not repeat the format or include any nested JSON. Output only one flat list as: Answers (answers): [{...}]
|
| 49 |
"""
|
| 50 |
|
|
|
|
| 51 |
# System message
|
| 52 |
sys_msg = SystemMessage(content=system_prompt)
|
| 53 |
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
def build_graph():
|
| 56 |
"""Build the graph"""
|
| 57 |
# First create the HuggingFaceEndpoint
|
|
|
|
| 84 |
formatted = f'Answers (answers): [{{"task_id": "{task_id}", "submitted_answer": "{answer_text}"}}]'
|
| 85 |
return {"messages": [formatted]}
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
# --- Graph Definition ---
|
| 88 |
builder = StateGraph(MessagesState)
|
|
|
|
| 89 |
builder.add_node("assistant", assistant)
|
| 90 |
builder.add_node("tools", ToolNode(tools))
|
| 91 |
|
| 92 |
builder.add_edge(START, "assistant")
|
|
|
|
| 93 |
builder.add_conditional_edges("assistant", tools_condition)
|
| 94 |
builder.add_edge("tools", "assistant")
|
| 95 |
|
|
|
|
| 97 |
return builder.compile()
|
| 98 |
|
| 99 |
|
| 100 |
+
def is_valid_agent_output(output):
|
| 101 |
+
"""
|
| 102 |
+
Checks if the output matches the required format:
|
| 103 |
+
Answers (answers): [{"task_id": ..., "submitted_answer": ...}]
|
| 104 |
+
"""
|
| 105 |
+
# Basic regex to check the format
|
| 106 |
+
pattern = r'^Answers \(answers\): \[(\{.*\})\]$'
|
| 107 |
+
match = re.match(pattern, output.strip())
|
| 108 |
+
if not match:
|
| 109 |
+
return False
|
| 110 |
+
|
| 111 |
+
# Try to parse the JSON part
|
| 112 |
+
try:
|
| 113 |
+
answers_list = json.loads(f'[{match.group(1)}]')
|
| 114 |
+
# Check required keys
|
| 115 |
+
for ans in answers_list:
|
| 116 |
+
if not isinstance(ans, dict):
|
| 117 |
+
return False
|
| 118 |
+
if "task_id" not in ans or "submitted_answer" not in ans:
|
| 119 |
+
return False
|
| 120 |
+
return True
|
| 121 |
+
except Exception:
|
| 122 |
+
return False
|
| 123 |
+
|
| 124 |
# test
|
| 125 |
if __name__ == "__main__":
|
| 126 |
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
|
|
|
| 129 |
# Run the graph
|
| 130 |
messages = [HumanMessage(content=question)]
|
| 131 |
# The initial state for the graph
|
| 132 |
+
initial_state = {"messages": messages, "task_id": "test123"}
|
| 133 |
+
|
| 134 |
# Invoke the graph stream to see the steps
|
| 135 |
for s in graph.stream(initial_state, stream_mode="values"):
|
| 136 |
message = s["messages"][-1]
|
|
|
|
| 139 |
print(message.content)
|
| 140 |
print("-----------------------")
|
| 141 |
else:
|
| 142 |
+
output = str(message)
|
| 143 |
+
print("Agent Output:", output)
|
| 144 |
+
if is_valid_agent_output(output):
|
| 145 |
+
print("✅ Output is in the correct format!")
|
| 146 |
+
else:
|
| 147 |
+
print("❌ Output is NOT in the correct format!")
|
app.py
CHANGED
|
@@ -54,38 +54,8 @@ class BasicAgent:
|
|
| 54 |
# The answer is expected to be in the 'content' of the last message.
|
| 55 |
answer = response_messages['messages'][-1].content
|
| 56 |
print(f"Agent full response: {answer}")
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
if not messages:
|
| 60 |
-
# print(f"No messages found in the result state for task {task_id}.")
|
| 61 |
-
return "AGENT ERROR: No messages returned by the agent."
|
| 62 |
-
|
| 63 |
-
for msg in reversed(messages):
|
| 64 |
-
if hasattr(msg, "content") and msg.content:
|
| 65 |
-
content = msg.content
|
| 66 |
-
if isinstance(content, str):
|
| 67 |
-
if "FINAL ANSWER:" in content:
|
| 68 |
-
final_answer = content.split("FINAL ANSWER:", 1)[1].strip()
|
| 69 |
-
break
|
| 70 |
-
elif isinstance(msg, AIMessage):
|
| 71 |
-
# If it's an AIMessage and no "FINAL ANSWER:" has been found yet,
|
| 72 |
-
# tentatively set it. This will be overridden if a "FINAL ANSWER:" is found later.
|
| 73 |
-
if not final_answer:
|
| 74 |
-
final_answer = content
|
| 75 |
-
|
| 76 |
-
# If after checking all messages, final_answer is still from a non-"FINAL ANSWER:" AIMessage, that's our best guess.
|
| 77 |
-
# If final_answer is empty, it means no AIMessage with content or "FINAL ANSWER:" was found.
|
| 78 |
-
if not final_answer: # This means no "FINAL ANSWER:" and no AIMessage content was suitable
|
| 79 |
-
final_answer = "AGENT ERROR: Could not extract a final answer from the agent's messages."
|
| 80 |
-
# print(f"Could not extract final answer for task {task_id}. Messages: {messages}")
|
| 81 |
-
|
| 82 |
-
# print(f"FinalAgent returning answer for task_id '{task_id}': {final_answer[:100]}...")
|
| 83 |
-
print(f"FinalAgent returning answer: {final_answer[:100]}...")
|
| 84 |
-
return final_answer
|
| 85 |
-
|
| 86 |
-
# return answer
|
| 87 |
-
|
| 88 |
-
|
| 89 |
|
| 90 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 91 |
"""
|
|
|
|
| 54 |
# The answer is expected to be in the 'content' of the last message.
|
| 55 |
answer = response_messages['messages'][-1].content
|
| 56 |
print(f"Agent full response: {answer}")
|
| 57 |
+
return answer
|
| 58 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 61 |
"""
|
old-tools.py
CHANGED
|
@@ -1,3 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
@tool
|
| 3 |
def web_search(query: str) -> str:
|
|
@@ -23,3 +29,68 @@ def web_search(query: str) -> str:
|
|
| 23 |
return results
|
| 24 |
except Exception as e:
|
| 25 |
return f"Error performing web search: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tempfile
|
| 2 |
+
|
| 3 |
+
import cv2
|
| 4 |
+
import torch
|
| 5 |
+
from pytube import YouTube
|
| 6 |
+
|
| 7 |
|
| 8 |
@tool
|
| 9 |
def web_search(query: str) -> str:
|
|
|
|
| 29 |
return results
|
| 30 |
except Exception as e:
|
| 31 |
return f"Error performing web search: {str(e)}"
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
@tool
|
| 35 |
+
def get_max_bird_species_count_from_video(url: str) -> Dict:
|
| 36 |
+
"""
|
| 37 |
+
Downloads a YouTube video and returns the maximum number of unique bird species
|
| 38 |
+
visible in any frame, along with the timestamp.
|
| 39 |
+
|
| 40 |
+
Parameters:
|
| 41 |
+
url (str): YouTube video URL
|
| 42 |
+
|
| 43 |
+
Returns:
|
| 44 |
+
dict: {
|
| 45 |
+
"max_species_count": int,
|
| 46 |
+
"timestamp": str,
|
| 47 |
+
"species_list": List[str],
|
| 48 |
+
}
|
| 49 |
+
"""
|
| 50 |
+
# 1. Download YouTube video
|
| 51 |
+
yt = YouTube(url)
|
| 52 |
+
stream = yt.streams.filter(file_extension='mp4').get_highest_resolution()
|
| 53 |
+
temp_video_path = os.path.join(tempfile.gettempdir(), "video.mp4")
|
| 54 |
+
stream.download(filename=temp_video_path)
|
| 55 |
+
|
| 56 |
+
# 2. Load object detection model for bird species
|
| 57 |
+
# Load a fine-tuned YOLOv5 model or similar pretrained on bird species
|
| 58 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best_birds.pt') # path to your trained model
|
| 59 |
+
|
| 60 |
+
# 3. Process video frames
|
| 61 |
+
cap = cv2.VideoCapture(temp_video_path)
|
| 62 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 63 |
+
frame_interval = int(fps * 1) # 1 frame per second
|
| 64 |
+
|
| 65 |
+
max_species_count = 0
|
| 66 |
+
max_species_frame_time = 0
|
| 67 |
+
species_at_max = []
|
| 68 |
+
|
| 69 |
+
frame_idx = 0
|
| 70 |
+
while cap.isOpened():
|
| 71 |
+
ret, frame = cap.read()
|
| 72 |
+
if not ret:
|
| 73 |
+
break
|
| 74 |
+
if frame_idx % frame_interval == 0:
|
| 75 |
+
# Run detection
|
| 76 |
+
results = model(frame)
|
| 77 |
+
detected_species = set()
|
| 78 |
+
for *box, conf, cls in results.xyxy[0]:
|
| 79 |
+
species_name = model.names[int(cls)]
|
| 80 |
+
detected_species.add(species_name)
|
| 81 |
+
|
| 82 |
+
if len(detected_species) > max_species_count:
|
| 83 |
+
max_species_count = len(detected_species)
|
| 84 |
+
max_species_frame_time = int(cap.get(cv2.CAP_PROP_POS_MSEC)) // 1000
|
| 85 |
+
species_at_max = list(detected_species)
|
| 86 |
+
|
| 87 |
+
frame_idx += 1
|
| 88 |
+
|
| 89 |
+
cap.release()
|
| 90 |
+
os.remove(temp_video_path)
|
| 91 |
+
|
| 92 |
+
return {
|
| 93 |
+
"max_species_count": max_species_count,
|
| 94 |
+
"timestamp": f"{max_species_frame_time}s",
|
| 95 |
+
"species_list": species_at_max
|
| 96 |
+
}
|
requirements.txt
CHANGED
|
@@ -10,9 +10,7 @@ langchain-core
|
|
| 10 |
langchain-community
|
| 11 |
langgraph
|
| 12 |
langchain-huggingface
|
| 13 |
-
|
| 14 |
-
chromadb # Explicitly add the Chroma database
|
| 15 |
-
sentence-transformers
|
| 16 |
langfuse
|
| 17 |
langchain-google-genai
|
| 18 |
langchain-tavily
|
|
@@ -40,18 +38,18 @@ typing-extensions
|
|
| 40 |
#tenacity
|
| 41 |
# loguru
|
| 42 |
|
| 43 |
-
torch
|
| 44 |
-
torchvision
|
| 45 |
-
opencv-python
|
| 46 |
-
pytube
|
| 47 |
|
| 48 |
# YOLOv5 and dependencies
|
| 49 |
-
numpy
|
| 50 |
-
matplotlib
|
| 51 |
-
scipy
|
| 52 |
-
seaborn
|
| 53 |
-
tqdm
|
| 54 |
-
pyyaml
|
| 55 |
-
pillow
|
| 56 |
|
| 57 |
# git+https://github.com/ultralytics/yolov5.git
|
|
|
|
| 10 |
langchain-community
|
| 11 |
langgraph
|
| 12 |
langchain-huggingface
|
| 13 |
+
# sentence-transformers
|
|
|
|
|
|
|
| 14 |
langfuse
|
| 15 |
langchain-google-genai
|
| 16 |
langchain-tavily
|
|
|
|
| 38 |
#tenacity
|
| 39 |
# loguru
|
| 40 |
|
| 41 |
+
# torch
|
| 42 |
+
# torchvision
|
| 43 |
+
# opencv-python
|
| 44 |
+
# pytube
|
| 45 |
|
| 46 |
# YOLOv5 and dependencies
|
| 47 |
+
# numpy
|
| 48 |
+
# matplotlib
|
| 49 |
+
# scipy
|
| 50 |
+
# seaborn
|
| 51 |
+
# tqdm
|
| 52 |
+
# pyyaml
|
| 53 |
+
# pillow
|
| 54 |
|
| 55 |
# git+https://github.com/ultralytics/yolov5.git
|
tools.py
CHANGED
|
@@ -2,13 +2,10 @@ import base64
|
|
| 2 |
import datetime
|
| 3 |
import math
|
| 4 |
import os
|
| 5 |
-
import tempfile
|
| 6 |
from typing import Dict, Union
|
| 7 |
|
| 8 |
-
import cv2
|
| 9 |
import pandas
|
| 10 |
import pytz
|
| 11 |
-
import torch
|
| 12 |
from bs4 import BeautifulSoup
|
| 13 |
from langchain_community.document_loaders import (
|
| 14 |
ArxivLoader, AssemblyAIAudioTranscriptLoader, WikipediaLoader)
|
|
@@ -19,7 +16,6 @@ from langchain_core.messages import HumanMessage
|
|
| 19 |
from langchain_core.tools import tool
|
| 20 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 21 |
from langchain_tavily import TavilySearch
|
| 22 |
-
from pytube import YouTube
|
| 23 |
|
| 24 |
|
| 25 |
@tool
|
|
@@ -742,70 +738,6 @@ def reverse_sentence(text: str) -> str:
|
|
| 742 |
"""
|
| 743 |
return text[::-1]
|
| 744 |
|
| 745 |
-
@tool
|
| 746 |
-
def get_max_bird_species_count_from_video(url: str) -> Dict:
|
| 747 |
-
"""
|
| 748 |
-
Downloads a YouTube video and returns the maximum number of unique bird species
|
| 749 |
-
visible in any frame, along with the timestamp.
|
| 750 |
-
|
| 751 |
-
Parameters:
|
| 752 |
-
url (str): YouTube video URL
|
| 753 |
-
|
| 754 |
-
Returns:
|
| 755 |
-
dict: {
|
| 756 |
-
"max_species_count": int,
|
| 757 |
-
"timestamp": str,
|
| 758 |
-
"species_list": List[str],
|
| 759 |
-
}
|
| 760 |
-
"""
|
| 761 |
-
# 1. Download YouTube video
|
| 762 |
-
yt = YouTube(url)
|
| 763 |
-
stream = yt.streams.filter(file_extension='mp4').get_highest_resolution()
|
| 764 |
-
temp_video_path = os.path.join(tempfile.gettempdir(), "video.mp4")
|
| 765 |
-
stream.download(filename=temp_video_path)
|
| 766 |
-
|
| 767 |
-
# 2. Load object detection model for bird species
|
| 768 |
-
# Load a fine-tuned YOLOv5 model or similar pretrained on bird species
|
| 769 |
-
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best_birds.pt') # path to your trained model
|
| 770 |
-
|
| 771 |
-
# 3. Process video frames
|
| 772 |
-
cap = cv2.VideoCapture(temp_video_path)
|
| 773 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 774 |
-
frame_interval = int(fps * 1) # 1 frame per second
|
| 775 |
-
|
| 776 |
-
max_species_count = 0
|
| 777 |
-
max_species_frame_time = 0
|
| 778 |
-
species_at_max = []
|
| 779 |
-
|
| 780 |
-
frame_idx = 0
|
| 781 |
-
while cap.isOpened():
|
| 782 |
-
ret, frame = cap.read()
|
| 783 |
-
if not ret:
|
| 784 |
-
break
|
| 785 |
-
if frame_idx % frame_interval == 0:
|
| 786 |
-
# Run detection
|
| 787 |
-
results = model(frame)
|
| 788 |
-
detected_species = set()
|
| 789 |
-
for *box, conf, cls in results.xyxy[0]:
|
| 790 |
-
species_name = model.names[int(cls)]
|
| 791 |
-
detected_species.add(species_name)
|
| 792 |
-
|
| 793 |
-
if len(detected_species) > max_species_count:
|
| 794 |
-
max_species_count = len(detected_species)
|
| 795 |
-
max_species_frame_time = int(cap.get(cv2.CAP_PROP_POS_MSEC)) // 1000
|
| 796 |
-
species_at_max = list(detected_species)
|
| 797 |
-
|
| 798 |
-
frame_idx += 1
|
| 799 |
-
|
| 800 |
-
cap.release()
|
| 801 |
-
os.remove(temp_video_path)
|
| 802 |
-
|
| 803 |
-
return {
|
| 804 |
-
"max_species_count": max_species_count,
|
| 805 |
-
"timestamp": f"{max_species_frame_time}s",
|
| 806 |
-
"species_list": species_at_max
|
| 807 |
-
}
|
| 808 |
-
|
| 809 |
@tool
|
| 810 |
def web_search(query: str) -> str:
|
| 811 |
"""
|
|
|
|
| 2 |
import datetime
|
| 3 |
import math
|
| 4 |
import os
|
|
|
|
| 5 |
from typing import Dict, Union
|
| 6 |
|
|
|
|
| 7 |
import pandas
|
| 8 |
import pytz
|
|
|
|
| 9 |
from bs4 import BeautifulSoup
|
| 10 |
from langchain_community.document_loaders import (
|
| 11 |
ArxivLoader, AssemblyAIAudioTranscriptLoader, WikipediaLoader)
|
|
|
|
| 16 |
from langchain_core.tools import tool
|
| 17 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 18 |
from langchain_tavily import TavilySearch
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
@tool
|
|
|
|
| 738 |
"""
|
| 739 |
return text[::-1]
|
| 740 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 741 |
@tool
|
| 742 |
def web_search(query: str) -> str:
|
| 743 |
"""
|