fabric / app.py
Krebzonide's picture
add previous seed block
b91ed64
raw
history blame
10.3 kB
import functools
import random
import gradio as gr
import torch
from fabric.generator import AttentionBasedGenerator
#model_name = "dreamlike-art/dreamlike-photoreal-2.0"
model_name = ""
model_ckpt = "https://huggingface.co/Lykon/DreamShaper/blob/main/DreamShaper_7_pruned.safetensors"
class GeneratorWrapper:
def __init__(self, model_name=None, model_ckpt=None):
self.model_name = model_name if model_name else None
self.model_ckpt = model_ckpt if model_ckpt else None
self.dtype = torch.float16 if torch.cuda.is_available() else torch.float32
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.reload()
def generate(self, *args, **kwargs):
if not hasattr(self, "generator"):
self.reload()
return self.generator.generate(*args, **kwargs)
def to(self, device):
return self.generator.to(device)
def reload(self):
if hasattr(self, "generator"):
del self.generator
if self.device == "cuda":
torch.cuda.empty_cache()
self.generator = AttentionBasedGenerator(
model_name=self.model_name,
model_ckpt=self.model_ckpt,
torch_dtype=self.dtype,
).to(self.device)
generator = GeneratorWrapper(model_name, model_ckpt)
css = """
.btn-green {
background-image: linear-gradient(to bottom right, #86efac, #22c55e) !important;
border-color: #22c55e !important;
color: #166534 !important;
}
.btn-green:hover {
background-image: linear-gradient(to bottom right, #86efac, #86efac) !important;
}
.btn-red {
background: linear-gradient(to bottom right, #fda4af, #fb7185) !important;
border-color: #fb7185 !important;
color: #9f1239 !important;
}
.btn-red:hover {background: linear-gradient(to bottom right, #fda4af, #fda4af) !important;}
/*****/
.dark .btn-green {
background-image: linear-gradient(to bottom right, #047857, #065f46) !important;
border-color: #047857 !important;
color: #ffffff !important;
}
.dark .btn-green:hover {
background-image: linear-gradient(to bottom right, #047857, #047857) !important;
}
.dark .btn-red {
background: linear-gradient(to bottom right, #be123c, #9f1239) !important;
border-color: #be123c !important;
color: #ffffff !important;
}
.dark .btn-red:hover {background: linear-gradient(to bottom right, #be123c, #be123c) !important;}
"""
def generate_fn(
feedback_enabled,
max_feedback_imgs,
prompt,
neg_prompt,
liked,
disliked,
denoising_steps,
guidance_scale,
feedback_start,
feedback_end,
min_weight,
max_weight,
neg_scale,
batch_size,
seed,
progress=gr.Progress(track_tqdm=True),
):
try:
if seed < 0:
seed = random.randint(1,9999999999999999) #16 digits is an arbitrary limit. I made it big so it would look cool.
print("seed: ", seed)
max_feedback_imgs = max(0, int(max_feedback_imgs))
total_images = (len(liked) if liked else 0) + (len(disliked) if disliked else 0)
if not feedback_enabled:
liked = []
disliked = []
elif total_images > max_feedback_imgs:
if liked and disliked:
max_disliked = min(len(disliked), max_feedback_imgs // 2)
max_liked = min(len(liked), max_feedback_imgs - max_disliked)
if max_liked > len(liked):
max_disliked = max_feedback_imgs - max_liked
liked = liked[-max_liked:]
disliked = disliked[-max_disliked:]
elif liked:
liked = liked[-max_feedback_imgs:]
disliked = []
else:
liked = []
disliked = disliked[-max_feedback_imgs:]
# else: keep all feedback images
generate_kwargs = {
"prompt": prompt,
"negative_prompt": neg_prompt,
"liked": liked,
"disliked": disliked,
"denoising_steps": denoising_steps,
"guidance_scale": guidance_scale,
"feedback_start": feedback_start,
"feedback_end": feedback_end,
"min_weight": min_weight,
"max_weight": max_weight,
"neg_scale": neg_scale,
"seed": seed,
"n_images": batch_size,
}
try:
images = generator.generate(**generate_kwargs)
except RuntimeError as err:
if 'out of memory' in str(err):
generator.reload()
raise
return [(img, f"Image {i+1}") for i, img in enumerate(images)], images, seed
except Exception as err:
raise gr.Error(str(err))
def add_img_from_list(i, curr_imgs, all_imgs):
if all_imgs is None:
all_imgs = []
if i >= 0 and i < len(curr_imgs):
all_imgs.append(curr_imgs[i])
return all_imgs, all_imgs # return (gallery, state)
def add_img(img, all_imgs):
if all_imgs is None:
all_imgs = []
all_imgs.append(img)
return None, all_imgs, all_imgs
def remove_img_from_list(event: gr.SelectData, imgs):
if event.index >= 0 and event.index < len(imgs):
imgs.pop(event.index)
return imgs, imgs
def duplicate_seed_value(seed): #I don't like the progress bar showing on the previous seed box and this is how I hide it
return seed
with gr.Blocks(css=css) as demo:
liked_imgs = gr.State([])
disliked_imgs = gr.State([])
curr_imgs = gr.State([])
with gr.Row():
with gr.Column(scale=100):
prompt = gr.Textbox(label="Prompt")
neg_prompt = gr.Textbox(label="Negative prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality")
submit_btn = gr.Button("Generate", variant="primary", min_width="96px")
with gr.Row(equal_height=False):
with gr.Column():
denoising_steps = gr.Slider(1, 100, value=20, step=1, label="Sampling steps")
guidance_scale = gr.Slider(0.0, 30.0, value=6, step=0.25, label="CFG scale")
batch_size = gr.Slider(1, 10, value=4, step=1, label="Batch size", interactive=False)
seed = gr.Number(-1, minimum=-1, precision=0, label="Seed")
max_feedback_imgs = gr.Slider(0, 20, value=6, step=1, label="Max. feedback images", info="Maximum number of liked/disliked images to be used. If exceeded, only the most recent images will be used as feedback. (NOTE: large number of feedback imgs => high VRAM requirements)")
feedback_enabled = gr.Checkbox(True, label="Enable feedback", interactive=True)
with gr.Accordion("Liked Images", open=True):
liked_img_input = gr.Image(type="pil", shape=(512, 512), height=128, label="Upload liked image")
like_gallery = gr.Gallery(label="πŸ‘ Liked images (click to remove)", columns=[3, 4, 3, 4, 5, 6], height=256, allow_preview=False)
clear_liked_btn = gr.Button("Clear likes")
with gr.Accordion("Disliked Images", open=True):
disliked_img_input = gr.Image(type="pil", shape=(512, 512), height=128, label="Upload disliked image")
dislike_gallery = gr.Gallery(label="πŸ‘Ž Disliked images (click to remove)", columns=[3, 4, 3, 4, 5, 6], height=256, allow_preview=False)
clear_disliked_btn = gr.Button("Clear dislikes")
with gr.Accordion("Feedback parameters", open=False):
feedback_start = gr.Slider(0.0, 1.0, value=0.0, label="Feedback start", info="Fraction of denoising steps starting from which to use max. feedback weight.")
feedback_end = gr.Slider(0.0, 1.0, value=0.8, label="Feedback end", info="Up to what fraction of denoising steps to use max. feedback weight.")
feedback_min_weight = gr.Slider(0.0, 1.0, value=0.0, label="Feedback min. weight", info="Attention weight of feedback images when turned off (set to 0.0 to disable)")
feedback_max_weight = gr.Slider(0.0, 1.0, value=0.8, label="Feedback max. weight", info="Attention weight of feedback images when turned on (set to 0.0 to disable)")
feedback_neg_scale = gr.Slider(0.0, 1.0, value=0.5, label="Neg. feedback scale", info="Attention weight of disliked images relative to liked images (set to 0.0 to disable negative feedback)")
with gr.Column():
gallery = gr.Gallery(label="Generated images")
like_btns = []
dislike_btns = []
with gr.Row():
for i in range(0, 2):
like_btn = gr.Button(f"πŸ‘ Image {i+1}", elem_classes="btn-green")
like_btns.append(like_btn)
with gr.Row():
for i in range(2, 4):
like_btn = gr.Button(f"πŸ‘ Image {i+1}", elem_classes="btn-green")
like_btns.append(like_btn)
with gr.Row():
for i in range(0, 2):
dislike_btn = gr.Button(f"πŸ‘Ž Image {i+1}", elem_classes="btn-red")
dislike_btns.append(dislike_btn)
with gr.Row():
for i in range(2, 4):
dislike_btn = gr.Button(f"πŸ‘Ž Image {i+1}", elem_classes="btn-red")
dislike_btns.append(dislike_btn)
prev_seed = gr.Number(-1, label="Previous seed", interactive=False)
prev_seed_hid = gr.Number(-1, visible=False)
generate_params = [
feedback_enabled,
max_feedback_imgs,
prompt,
neg_prompt,
liked_imgs,
disliked_imgs,
denoising_steps,
guidance_scale,
feedback_start,
feedback_end,
feedback_min_weight,
feedback_max_weight,
feedback_neg_scale,
batch_size,
seed,
]
submit_btn.click(generate_fn, generate_params, [gallery, curr_imgs, prev_seed_hid], queue=True)
prev_seed_hid.change(duplicate_seed_value, prev_seed_hid, prev_seed)
for i, like_btn in enumerate(like_btns):
like_btn.click(functools.partial(add_img_from_list, i), [curr_imgs, liked_imgs], [like_gallery, liked_imgs], queue=False)
for i, dislike_btn in enumerate(dislike_btns):
dislike_btn.click(functools.partial(add_img_from_list, i), [curr_imgs, disliked_imgs], [dislike_gallery, disliked_imgs], queue=False)
like_gallery.select(remove_img_from_list, [liked_imgs], [like_gallery, liked_imgs], queue=False)
dislike_gallery.select(remove_img_from_list, [disliked_imgs], [dislike_gallery, disliked_imgs], queue=False)
liked_img_input.upload(add_img, [liked_img_input, liked_imgs], [liked_img_input, like_gallery, liked_imgs], queue=False)
disliked_img_input.upload(add_img, [disliked_img_input, disliked_imgs], [disliked_img_input, dislike_gallery, disliked_imgs], queue=False)
clear_liked_btn.click(lambda: [[], []], None, [liked_imgs, like_gallery], queue=False)
clear_disliked_btn.click(lambda: [[], []], None, [disliked_imgs, dislike_gallery], queue=False)
demo.queue(1)
demo.launch(debug=True)