Spaces:
Sleeping
Sleeping
Drew Skillman
commited on
Commit
•
2a76b54
1
Parent(s):
f581b9c
switch to cache model and not use zero
Browse files- .gitignore +2 -0
- app.py +10 -4
.gitignore
CHANGED
@@ -1 +1,3 @@
|
|
1 |
.DS_Store
|
|
|
|
|
|
1 |
.DS_Store
|
2 |
+
*.wav
|
3 |
+
*.mp3
|
app.py
CHANGED
@@ -11,16 +11,20 @@ from pydub import AudioSegment
|
|
11 |
from stable_audio_tools import get_pretrained_model
|
12 |
from stable_audio_tools.inference.generation import generate_diffusion_cond
|
13 |
|
|
|
|
|
14 |
# Load the model outside of the GPU-decorated function
|
15 |
def load_model():
|
|
|
16 |
print("Loading model...")
|
17 |
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
|
18 |
print("Model loaded successfully.")
|
19 |
return model, model_config
|
20 |
|
21 |
# Function to set up, generate, and process the audio
|
22 |
-
@spaces.GPU(duration=120) # Allocate GPU only when this function is called
|
23 |
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
|
|
|
|
|
24 |
print(f"Prompt received: {prompt}")
|
25 |
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")
|
26 |
|
@@ -32,7 +36,7 @@ def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
|
|
32 |
print(f"Hugging Face token: {hf_token}")
|
33 |
|
34 |
# Use pre-loaded model and configuration
|
35 |
-
model, model_config = load_model()
|
36 |
sample_rate = model_config["sample_rate"]
|
37 |
sample_size = model_config["sample_size"]
|
38 |
|
@@ -79,7 +83,8 @@ def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
|
|
79 |
# Save to file
|
80 |
torchaudio.save(unique_filename, output, sample_rate)
|
81 |
print(f"Audio saved: {unique_filename}")
|
82 |
-
|
|
|
83 |
# Convert WAV to MP3 using pydub without ffmpeg
|
84 |
audio = AudioSegment.from_wav(unique_filename)
|
85 |
full_path_mp3 = unique_filename.replace('wav', 'mp3')
|
@@ -89,6 +94,7 @@ def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
|
|
89 |
|
90 |
# Return the path to the generated audio file
|
91 |
return full_path_mp3
|
|
|
92 |
|
93 |
# Setting up the Gradio Interface
|
94 |
interface = gr.Interface(
|
@@ -117,4 +123,4 @@ with gr.Blocks() as demo:
|
|
117 |
# Pre-load the model to avoid multiprocessing issues
|
118 |
model, model_config = load_model()
|
119 |
|
120 |
-
demo.launch()
|
|
|
11 |
from stable_audio_tools import get_pretrained_model
|
12 |
from stable_audio_tools.inference.generation import generate_diffusion_cond
|
13 |
|
14 |
+
global model, model_config
|
15 |
+
|
16 |
# Load the model outside of the GPU-decorated function
|
17 |
def load_model():
|
18 |
+
global model, model_config
|
19 |
print("Loading model...")
|
20 |
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
|
21 |
print("Model loaded successfully.")
|
22 |
return model, model_config
|
23 |
|
24 |
# Function to set up, generate, and process the audio
|
|
|
25 |
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
|
26 |
+
global model, model_config
|
27 |
+
|
28 |
print(f"Prompt received: {prompt}")
|
29 |
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")
|
30 |
|
|
|
36 |
print(f"Hugging Face token: {hf_token}")
|
37 |
|
38 |
# Use pre-loaded model and configuration
|
39 |
+
#model, model_config = load_model()
|
40 |
sample_rate = model_config["sample_rate"]
|
41 |
sample_size = model_config["sample_size"]
|
42 |
|
|
|
83 |
# Save to file
|
84 |
torchaudio.save(unique_filename, output, sample_rate)
|
85 |
print(f"Audio saved: {unique_filename}")
|
86 |
+
return unique_filename
|
87 |
+
'''
|
88 |
# Convert WAV to MP3 using pydub without ffmpeg
|
89 |
audio = AudioSegment.from_wav(unique_filename)
|
90 |
full_path_mp3 = unique_filename.replace('wav', 'mp3')
|
|
|
94 |
|
95 |
# Return the path to the generated audio file
|
96 |
return full_path_mp3
|
97 |
+
'''
|
98 |
|
99 |
# Setting up the Gradio Interface
|
100 |
interface = gr.Interface(
|
|
|
123 |
# Pre-load the model to avoid multiprocessing issues
|
124 |
model, model_config = load_model()
|
125 |
|
126 |
+
demo.launch(share=True)
|