File size: 8,481 Bytes
19c197e
 
314e308
19c197e
be35644
19c197e
ce348fb
 
43baccc
 
616fdd5
43baccc
a254087
38a598e
 
 
616fdd5
 
19c197e
4d7bc24
5111500
4d7bc24
f3fb7cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc64858
19c197e
a0f9cd0
68a533c
f3fb7cf
 
 
 
 
 
 
 
2daa8ec
19c197e
f0338f9
 
 
616fdd5
 
f0338f9
bd326a6
76e0010
9f55c0c
06f19b7
 
b1416f5
06f19b7
 
b3f2aff
 
 
8587a98
b3f2aff
 
06f19b7
b3f2aff
76e0010
587bb73
 
 
b3f2aff
 
 
9483377
314e308
828a1a3
314e308
 
c4a3b6b
314e308
587bb73
314e308
 
 
76e0010
616fdd5
 
 
 
587bb73
76e0010
587bb73
 
4a1ee55
770c64d
b1416f5
3466d28
5169878
4e013ca
b1416f5
 
 
 
 
 
35a46f6
 
 
b1416f5
 
12fc320
b1416f5
 
bc64858
63674ad
310b704
63674ad
1432853
63674ad
 
 
 
 
 
 
 
 
 
310b704
63674ad
 
 
 
 
bc64858
63674ad
1f71f79
63674ad
1f71f79
63674ad
 
1f71f79
2ea496c
19c197e
 
2ea496c
992e84a
165fe32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19c197e
165fe32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19c197e
165fe32
 
 
19c197e
165fe32
 
19c197e
165fe32
 
 
 
19c197e
165fe32
 
 
 
bd326a6
165fe32
 
 
ed0e30c
35a46f6
d31ee13
 
 
 
0effeae
 
d31ee13
 
0c419b8
d31ee13
 
0effeae
 
 
d31ee13
 
 
 
 
 
 
19c197e
 
bd326a6
2daa8ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import streamlit as st
from transformers import pipeline
from io import StringIO

unmasker = pipeline('fill-mask', model='dsfsi/zabantu-sot-ven-170m')

st.set_page_config(layout="wide")

def fill_mask(sentences):
    results = {}
    warnings = []
    for sentence in sentences:
        if "<mask>" in sentence:
            unmasked = unmasker(sentence)
            results[sentence] = unmasked
        else:
            warnings.append(f"Warning: No <mask> token found in sentence: {sentence}")
    return results, warnings

def replace_mask(sentence, predicted_word):
    return sentence.replace("<mask>", f"**{predicted_word}**")

st.write(f"")
img1, img2, img3 = st.columns(3)
with img2:
    with st.container(border=False):
        st.image("logo_transparent_small.png")

st.markdown("""
    <div style='text-align: center;'>
        <a href='https://github.com/dsfsi' target='_blank'>Github</a> |
        <a href='https://docs.google.com/forms/d/e/1FAIpQLSf7S36dyAUPx2egmXbFpnTBuzoRulhL5Elu-N1eoMhaO7v10w/viewform' target='_blank'>Feedback Form</a> |
        <a href='https://huggingface.co/papers/1911.02116' target='_blank'>arxiv</a>
    </div>
""", unsafe_allow_html=True)
 
st.markdown("""
    <div style='text-align: center;'>
      <h2>Fill Mask | Zabantu-sot-ven-170m</h2>    
    </div>
""", unsafe_allow_html=True)
st.write(f"")

st.markdown("This is a variant of Zabantu pre-trained on a multilingual dataset of Tshivenda(ven) and Sotho family(Northern Sotho, Southern Sotho, Setswana) sentences on a transformer network with 170 million traininable parameters.")

with st.expander("More information about the space"):
    st.write('''
        Authors: Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, Veselin Stoyanov
    ''')
    cit1,cit2 = st.columns(2)
    # with cit1:
    # with cit2:

col1, col2 = st.columns(2)

if 'text_input' not in st.session_state:
    st.session_state['text_input'] = ""

if 'warnings' not in st.session_state:
    st.session_state['warnings'] = []

with col1:
    with st.container(border=True):
        st.markdown("Input :clipboard:")

        select_options = ['Choose option', 'Enter text input', 'Upload a file(csv/txt)']
        sample_sentence = "Vhana vhane vha kha ḓi bva u bebwa vha kha khombo ya u <mask> nga Listeriosis."

        option_selected = st.selectbox(f"Select an input option:", select_options, index=0)

        if option_selected == 'Enter text input':
            text_input = st.text_area(
                "Enter sentences with <mask> token(one sentence per line):",
                value=st.session_state['text_input']
            )
        
            input_sentences = text_input.split("\n")
    
            if st.button("Submit",use_container_width=True):
                result, warnings = fill_mask(input_sentences)
                st.session_state['warnings'] = warnings 

        if option_selected == 'Upload a file(csv/txt)':
            
            uploaded_file = st.file_uploader("Choose a file-(one sentence per line)")
            if uploaded_file is not None:
                
                stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
                string_data = stringio.read()
                
                input_sentences = string_data.split("\n")
    
                if st.button("Submit",use_container_width=True):
                    result, warnings = fill_mask(input_sentences)
                    st.session_state['warnings'] = warnings 
    
        if st.session_state['warnings']:
            for warning in st.session_state['warnings']:
                st.warning(warning)

        st.markdown("Example")
        st.code(sample_sentence, wrap_lines=True)
        if st.button("Test Example",use_container_width=True):
            result, warnings = fill_mask(sample_sentence.split("\n"))

with col2:
    with st.container(border=True):
        st.markdown("Output :bar_chart:")
        if 'result' in locals() and result:  
            if len(result) == 1:
                for sentence, predictions in result.items():
                    for prediction in predictions:
                        predicted_word = prediction['token_str']
                        score = prediction['score'] * 100
    
                        st.markdown(f"""
                        <div class="bar">
                            <div class="bar-fill" style="width: {score}%;"></div>
                        </div>
                        <div class="container">
                            <div style="align-items: left;">{predicted_word}</div>
                            <div style="align-items: center;">{score:.2f}%</div>
                        </div>
                        """, unsafe_allow_html=True)

            else:
                index = 0
                for sentence, predictions in result.items():
                    index += 1
                    if predictions:
                        top_prediction = predictions[0]
                        predicted_word = top_prediction['token_str']
                        score = top_prediction['score'] * 100
    
                        st.markdown(f"""
                        <div class="bar">
                            <div class="bar-fill" style="width: {score}%;"></div>
                        </div>
                        <div class="container">
                            <div style="align-items: left;">{predicted_word} (line {index})</div>
                            <div style="align-items: right;">{score:.2f}%</div>
                        </div>
                        """, unsafe_allow_html=True)

                
if 'result' in locals():  
    if result:
        line = 0
        for sentence, predictions in result.items():
            line += 1
            predicted_word = predictions[0]['token_str']
            full_sentence = replace_mask(sentence, predicted_word)
            st.write(f"**Sentence {line}:** {full_sentence }")

css = """
<style>
footer {display:none !important;}

.gr-button-primary {
    z-index: 14;
    height: 43px;
    width: 130px;
    left: 0px;
    top: 0px;
    padding: 0px;
    cursor: pointer !important; 
    background: none rgb(17, 20, 45) !important;
    border: none !important;
    text-align: center !important;
    font-family: Poppins !important;
    font-size: 14px !important;
    font-weight: 500 !important;
    color: rgb(255, 255, 255) !important;
    line-height: 1 !important;
    border-radius: 12px !important;
    transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
    box-shadow: none !important;
}
.gr-button-primary:hover{
    z-index: 14;
    height: 43px;
    width: 130px;
    left: 0px;
    top: 0px;
    padding: 0px;
    cursor: pointer !important;
    background: none rgb(66, 133, 244) !important;
    border: none !important;
    text-align: center !important;
    font-family: Poppins !important;
    font-size: 14px !important;
    font-weight: 500 !important;
    color: rgb(255, 255, 255) !important;
    line-height: 1 !important;
    border-radius: 12px !important;
    transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
    box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
}
.hover\:bg-orange-50:hover {
    --tw-bg-opacity: 1 !important;
    background-color: rgb(229,225,255) !important;
}
.to-orange-200 {
    --tw-gradient-to: rgb(37 56 133 / 37%) !important;
}
.from-orange-400 {
    --tw-gradient-from: rgb(17, 20, 45) !important;
    --tw-gradient-to: rgb(255 150 51 / 0);
    --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
}
.group-hover\:from-orange-500{
    --tw-gradient-from:rgb(17, 20, 45) !important; 
    --tw-gradient-to: rgb(37 56 133 / 37%);
    --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
}
.group:hover .group-hover\:text-orange-500{
    --tw-text-opacity: 1 !important;
    color:rgb(37 56 133 / var(--tw-text-opacity)) !important;
}

.container {
    display: flex;
    justify-content: space-between;
    align-items: center;
    margin-bottom: 5px;
    width: 100%;
}
.bar {
    # width: 70%;
    background-color: #e6e6e6;
    border-radius: 12px;
    overflow: hidden;
    margin-right: 10px;
    height: 5px;
}
.bar-fill {
    background-color: #17152e;
    height: 100%;
    border-radius: 12px;
}

</style>
"""

st.markdown(css, unsafe_allow_html=True)