PuoBERTaSpace / app.py
Andinda's picture
adding text
125e609 verified
raw
history blame
5.69 kB
# Turkish NER Demo for Various Models
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer, DebertaV2Tokenizer, DebertaV2Model
import sentencepiece
import streamlit as st
import pandas as pd
import spacy
st.set_page_config(layout="wide")
example_list = [
"Moso ono mo dikgang tsa ura le ura, o tsoga le Oarabile Moamogwe go simolola ka 05:00 - 10:00"
]
st.title("Demo for Sestwana NER Models")
st.write("A Setswana Langage Model Finetuned on MasakhaNER-2 for Named Entity Recognition")
st.write("Co authors : Vukosi Marivate (@vukosi), Moseli Mots'Oehli (@MoseliMotsoehli) , Valencia Wagner, Richard Lastrucci and Isheanesu Dzingirai")
st.write("Link to model: https://huggingface.co/dsfsi/PuoBERTa")
model_list = ['dsfsi/PuoBERTa-NER']
st.sidebar.header("Select NER Model")
model_checkpoint = st.sidebar.radio("", model_list)
if model_checkpoint == "akdeniz27/xlm-roberta-base-turkish-ner":
aggregation = "simple"
elif model_checkpoint == "dsfsi/PuoBERTa-NER":
aggregation = "simple"
elif model_checkpoint == "xlm-roberta-large-finetuned-conll03-english" or model_checkpoint == "asahi417/tner-xlm-roberta-base-ontonotes5":
aggregation = "simple"
st.sidebar.write("")
st.sidebar.write("The selected NER model is included just to show the zero-shot transfer learning capability of XLM-Roberta pretrained language model.")
else:
aggregation = "first"
st.subheader("Select Text Input Method")
input_method = st.radio("", ('Select from Examples', 'Write or Paste New Text','Upload CSV File'))
if input_method == 'Select from Examples':
selected_text = st.selectbox('Select Text from List', example_list, index=0, key=1)
st.subheader("Text to Run")
input_text = st.text_area("Selected Text", selected_text, height=128, max_chars=None, key=2)
elif input_method == "Write or Paste New Text":
st.subheader("Text to Run")
input_text = st.text_area('Write or Paste Text Below', value="", height=128, max_chars=None, key=2)
elif input_method == "Upload CSV File":
st.subheader("Upload CSV File")
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
if uploaded_file is not None:
df_csv = pd.read_csv(uploaded_file)
st.write(df_csv)
sentences = []
for index, row in df_csv.iterrows():
for col in df_csv.columns:
# Add each sentence from the row and columns into the list
sentence = row[col]
if pd.notna(sentence): # Ensure it is not empty or NaN
sentences.append(sentence)
text_column = st.selectbox("Select the column containing text", sentences)
input_text = text_column
@st.cache_resource
def setModel(model_checkpoint, aggregation):
tokenizer = AutoTokenizer.from_pretrained("dsfsi/PuoBERTa-NER")
model = AutoModelForTokenClassification.from_pretrained("dsfsi/PuoBERTa-NER")
return pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy=aggregation)
@st.cache_resource
def get_html(html: str):
WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>"""
html = html.replace("\n", " ")
return WRAPPER.format(html)
@st.cache_resource
def entity_comb(output):
output_comb = []
for ind, entity in enumerate(output):
if ind == 0:
output_comb.append(entity)
elif output[ind]["start"] == output[ind-1]["end"] and output[ind]["entity_group"] == output[ind-1]["entity_group"]:
output_comb[-1]["word"] = output_comb[-1]["word"] + output[ind]["word"]
output_comb[-1]["end"] = output[ind]["end"]
else:
output_comb.append(entity)
return output_comb
Run_Button = st.button("Run", key=None)
if Run_Button and input_text != "":
ner_pipeline = setModel(model_checkpoint, aggregation)
output = ner_pipeline(input_text)
output_comb = entity_comb(output)
df = pd.DataFrame.from_dict(output_comb)
cols_to_keep = ['word','entity_group','score','start','end']
df_final = df[cols_to_keep]
st.subheader("Recognized Entities")
st.dataframe(df_final)
st.subheader("Spacy Style Display")
spacy_display = {}
spacy_display["ents"] = []
spacy_display["text"] = input_text
spacy_display["title"] = None
for entity in output_comb:
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity_group"]})
tner_entity_list = ["person", "group", "facility", "organization", "geopolitical area", "location", "product", "event", "work of art", "law", "language", "date", "time", "percent", "money", "quantity", "ordinal number", "cardinal number"]
spacy_entity_list = ["PERSON", "NORP", "FAC", "ORG", "GPE", "LOC", "PRODUCT", "EVENT", "WORK_OF_ART", "LAW", "LANGUAGE", "DATE", "TIME", "PERCENT", "MONEY", "QUANTITY", "ORDINAL", "CARDINAL", "MISC"]
for ent in spacy_display["ents"]:
if model_checkpoint == "asahi417/tner-xlm-roberta-base-ontonotes5":
ent["label"] = spacy_entity_list[tner_entity_list.index(ent["label"])]
else:
if ent["label"] == "PER": ent["label"] = "PERSON"
# colors = {'PER': '#85DCDF', 'LOC': '#DF85DC', 'ORG': '#DCDF85', 'MISC': '#85ABDF',}
html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True, options={"ents": spacy_entity_list}) # , "colors": colors})
style = "<style>mark.entity { display: inline-block }</style>"
st.write(f"{style}{get_html(html)}", unsafe_allow_html=True)