Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from langchain_community.document_loaders import PDFPlumberLoader
|
| 4 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 5 |
+
from langchain.vectorstores import FAISS
|
| 6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 7 |
+
from langchain.prompts import ChatPromptTemplate
|
| 8 |
+
from langchain.chains import LLMChain
|
| 9 |
+
from langchain.llms import CTransformers
|
| 10 |
+
import torch
|
| 11 |
+
|
| 12 |
+
# ==== Configuration ====
|
| 13 |
+
pdfs_directory = 'pdfs'
|
| 14 |
+
vectorstores_directory = 'vectorstores_medical'
|
| 15 |
+
os.makedirs(pdfs_directory, exist_ok=True)
|
| 16 |
+
os.makedirs(vectorstores_directory, exist_ok=True)
|
| 17 |
+
|
| 18 |
+
PREDEFINED_BOOKS = [f for f in os.listdir(pdfs_directory) if f.endswith(".pdf")]
|
| 19 |
+
|
| 20 |
+
TEMPLATE = """
|
| 21 |
+
You are a medical assistant with deep clinical knowledge.
|
| 22 |
+
Use the following retrieved context to answer the question.
|
| 23 |
+
If unsure, say "I don't know." Keep answers accurate, concise, and clear.
|
| 24 |
+
|
| 25 |
+
Question: {question}
|
| 26 |
+
Context: {context}
|
| 27 |
+
Answer:
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
# ==== Embedding Model (Medical) ====
|
| 31 |
+
embedding_model = HuggingFaceEmbeddings(
|
| 32 |
+
model_name='pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb',
|
| 33 |
+
model_kwargs={"device": "cuda" if torch.cuda.is_available() else "cpu"},
|
| 34 |
+
encode_kwargs={"normalize_embeddings": False}
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# ==== LLM (Local Quantized Medical Model) ====
|
| 38 |
+
# llm = CTransformers(
|
| 39 |
+
# model='TheBloke/MedAlpaca-7B-GGUF',
|
| 40 |
+
# model_file='medalpaca-7b.Q4_K_M.gguf',
|
| 41 |
+
# model_type='llama',
|
| 42 |
+
# config={'max_new_tokens': 512, 'temperature': 0.4}
|
| 43 |
+
# )
|
| 44 |
+
from langchain.llms import HuggingFaceHub
|
| 45 |
+
|
| 46 |
+
hf_token = "your_huggingface_token"
|
| 47 |
+
|
| 48 |
+
llm = HuggingFaceHub(
|
| 49 |
+
repo_id="epfl-llm/meditron-7b", # Or BioGPT, GatorTron, ClinicalT5, etc.
|
| 50 |
+
model_kwargs={"temperature": 0.4, "max_new_tokens": 512},
|
| 51 |
+
huggingfacehub_api_token=hf_token
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
# ==== Helpers ====
|
| 55 |
+
def split_text(documents):
|
| 56 |
+
splitter = RecursiveCharacterTextSplitter(
|
| 57 |
+
chunk_size=1000,
|
| 58 |
+
chunk_overlap=200,
|
| 59 |
+
add_start_index=True
|
| 60 |
+
)
|
| 61 |
+
return splitter.split_documents(documents)
|
| 62 |
+
|
| 63 |
+
def get_vectorstore_path(book_filename):
|
| 64 |
+
base_name = os.path.splitext(book_filename)[0]
|
| 65 |
+
return os.path.join(vectorstores_directory, base_name)
|
| 66 |
+
|
| 67 |
+
def load_or_create_vectorstore(book_filename, documents=None):
|
| 68 |
+
vs_path = get_vectorstore_path(book_filename)
|
| 69 |
+
|
| 70 |
+
if os.path.exists(os.path.join(vs_path, "index.faiss")):
|
| 71 |
+
return FAISS.load_local(vs_path, embedding_model, allow_dangerous_deserialization=True)
|
| 72 |
+
|
| 73 |
+
if documents is None:
|
| 74 |
+
raise ValueError("Documents required to create vector store.")
|
| 75 |
+
|
| 76 |
+
with st.spinner(f"β³ Creating vector store for '{book_filename}'..."):
|
| 77 |
+
os.makedirs(vs_path, exist_ok=True)
|
| 78 |
+
chunks = split_text(documents)
|
| 79 |
+
vector_store = FAISS.from_documents(chunks, embedding_model)
|
| 80 |
+
vector_store.save_local(vs_path)
|
| 81 |
+
st.success(f"β
Vector store created for '{book_filename}'.")
|
| 82 |
+
return vector_store
|
| 83 |
+
|
| 84 |
+
def retrieve_docs(vector_store, query):
|
| 85 |
+
return vector_store.similarity_search(query)
|
| 86 |
+
|
| 87 |
+
def answer_question(question, documents):
|
| 88 |
+
context = "\n\n".join(doc.page_content for doc in documents)
|
| 89 |
+
prompt = ChatPromptTemplate.from_template(TEMPLATE)
|
| 90 |
+
chain = LLMChain(llm=llm, prompt=prompt)
|
| 91 |
+
return chain.run({"question": question, "context": context})
|
| 92 |
+
|
| 93 |
+
def upload_pdf(file):
|
| 94 |
+
save_path = os.path.join(pdfs_directory, file.name)
|
| 95 |
+
with open(save_path, "wb") as f:
|
| 96 |
+
f.write(file.getbuffer())
|
| 97 |
+
return file.name
|
| 98 |
+
|
| 99 |
+
def load_pdf(file_path):
|
| 100 |
+
loader = PDFPlumberLoader(file_path)
|
| 101 |
+
return loader.load()
|
| 102 |
+
|
| 103 |
+
# ==== Streamlit App ====
|
| 104 |
+
st.set_page_config(page_title="π©Ί Medical PDF Chat", layout="centered")
|
| 105 |
+
st.title("π Medical Assistant - PDF Q&A")
|
| 106 |
+
|
| 107 |
+
with st.sidebar:
|
| 108 |
+
st.header("Select or Upload a Medical Book")
|
| 109 |
+
selected_book = st.selectbox("Choose a PDF", PREDEFINED_BOOKS + ["Upload new book"])
|
| 110 |
+
|
| 111 |
+
if selected_book == "Upload new book":
|
| 112 |
+
uploaded_file = st.file_uploader("Upload Medical PDF", type="pdf")
|
| 113 |
+
if uploaded_file:
|
| 114 |
+
filename = upload_pdf(uploaded_file)
|
| 115 |
+
st.success(f"π₯ Uploaded: {filename}")
|
| 116 |
+
selected_book = filename
|
| 117 |
+
|
| 118 |
+
# ==== Main Logic ====
|
| 119 |
+
if selected_book and selected_book != "Upload new book":
|
| 120 |
+
st.info(f"π You selected: {selected_book}")
|
| 121 |
+
file_path = os.path.join(pdfs_directory, selected_book)
|
| 122 |
+
vectorstore_path = get_vectorstore_path(selected_book)
|
| 123 |
+
|
| 124 |
+
try:
|
| 125 |
+
if os.path.exists(os.path.join(vectorstore_path, "index.faiss")):
|
| 126 |
+
st.success("β
Vector store already exists. Using cached version.")
|
| 127 |
+
vector_store = load_or_create_vectorstore(selected_book)
|
| 128 |
+
else:
|
| 129 |
+
documents = load_pdf(file_path)
|
| 130 |
+
vector_store = load_or_create_vectorstore(selected_book, documents)
|
| 131 |
+
|
| 132 |
+
# Chat Input
|
| 133 |
+
question = st.chat_input("Ask your medical question...")
|
| 134 |
+
if question:
|
| 135 |
+
st.chat_message("user").write(question)
|
| 136 |
+
related_docs = retrieve_docs(vector_store, question)
|
| 137 |
+
answer = answer_question(question, related_docs)
|
| 138 |
+
st.chat_message("assistant").write(answer)
|
| 139 |
+
|
| 140 |
+
except Exception as e:
|
| 141 |
+
st.error(f"β Error loading or processing the PDF: {e}")
|