Spaces:
Sleeping
Sleeping
File size: 6,652 Bytes
528fb81 4e6ec3b 528fb81 afeeaa2 528fb81 afeeaa2 528fb81 afeeaa2 528fb81 afeeaa2 528fb81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import requests
from tqdm import tqdm
def download_file(url, output_path):
response = requests.get(url, stream=True)
total_size = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
t = tqdm(total=total_size, unit='iB', unit_scale=True)
with open(output_path, 'wb') as f:
for data in response.iter_content(block_size):
t.update(len(data))
f.write(data)
t.close()
if total_size != 0 and t.n != total_size:
print("ERROR: Something went wrong in download")
else:
print(f"β
Downloaded: {output_path}")
# Example: Download SAM checkpoint
sam_checkpoint_url = "https://huggingface.co/camenduru/segment_anything/resolve/main/sam_vit_h_4b8939.pth"
download_file(sam_checkpoint_url, "sam_vit_h_4b8939.pth")
# Example: Download Stable Diffusion checkpoint
sd_checkpoint_url = "https://huggingface.co/stabilityai/stable-diffusion-2-inpainting/resolve/main/model_index.json"
download_file(sd_checkpoint_url, "model_index.json")
###########################
import os
import requests
import zipfile
import io
import streamlit as st
def download_sam_repo():
repo_url = "https://github.com/facebookresearch/segment-anything/archive/refs/heads/main.zip"
repo_dir = "segment-anything-main"
if not os.path.exists(repo_dir):
st.info("π½ Downloading Segment Anything repo...")
response = requests.get(repo_url)
if response.status_code == 200:
with zipfile.ZipFile(io.BytesIO(response.content)) as zip_ref:
zip_ref.extractall(".")
st.success("β
Segment Anything repo downloaded and extracted!")
else:
st.error(f"β Failed to download repo: {response.status_code}")
else:
st.info("β
Segment Anything repo already exists.")
# Call it at app start
download_sam_repo()
import sys
sys.path.append(os.path.abspath("segment-anything-main"))
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
##########################
sam = sam_model_registry["vit_h"](checkpoint="sam_vit_h_4b8939.pth")
#sam.to(device="cpu")
import streamlit as st
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
from diffusers import StableDiffusionInpaintPipeline, EulerDiscreteScheduler
import copy
# ===========================
# Initialize SAM & Diffusion
# ===========================
@st.cache_resource
def load_sam():
sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"
device = "cpu"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
mask_generator = SamAutomaticMaskGenerator(
model=sam,
points_per_side=32,
pred_iou_thresh=0.99,
stability_score_thresh=0.92,
crop_n_layers=1,
crop_n_points_downscale_factor=2,
min_mask_region_area=100,
)
return mask_generator
@st.cache_resource
def load_pipeline():
model_dir = 'stabilityai/stable-diffusion-2-inpainting'
scheduler = EulerDiscreteScheduler.from_pretrained(model_dir, subfolder='scheduler')
pipe = StableDiffusionInpaintPipeline.from_pretrained(
model_dir,
scheduler=scheduler,
torch_dtype=torch.float16,
revision="fp16"
)
#pipe = pipe.to('cuda')
pipe.enable_xformers_memory_efficient_attention()
return pipe
# ===================
# Helper Functions
# ===================
def create_image_grid(original_image, images, names, rows, columns):
images = copy.copy(images)
names = copy.copy(names)
images.insert(0, original_image)
names.insert(0, "Original")
fig, axes = plt.subplots(rows, columns, figsize=(15, 15))
for idx, (img, name) in enumerate(zip(images, names)):
row, col = divmod(idx, columns)
axes[row, col].imshow(img)
axes[row, col].set_title(name)
axes[row, col].axis('off')
for idx in range(len(images), rows * columns):
row, col = divmod(idx, columns)
axes[row, col].axis('off')
plt.tight_layout()
st.pyplot(fig)
# ===================
# Streamlit UI
# ===================
st.title("π¨ Segment & Inpaint Anything App")
uploaded_file = st.file_uploader("Upload an Image", type=['png', 'jpg', 'jpeg'])
if uploaded_file:
source_image = Image.open(uploaded_file).convert("RGB")
st.image(source_image, caption="Uploaded Image", use_column_width=True)
# SAM
mask_generator = load_sam()
segmentation_image = np.asarray(source_image)
masks = mask_generator.generate(segmentation_image)
st.write(f"Number of segments detected: {len(masks)}")
# Show masks
fig, ax = plt.subplots(figsize=(10, 10))
ax.imshow(source_image)
for i, mask in enumerate(masks):
m = mask['segmentation']
color = np.random.random((1, 3)).tolist()[0]
img = np.ones((m.shape[0], m.shape[1], 3))
for j in range(3):
img[:, :, j] = color[j]
ax.imshow(np.dstack((img, m * 0.35)))
contours, _ = cv2.findContours(m.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
cnt = contours[0]
M = cv2.moments(cnt)
if M["m00"] != 0:
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
ax.text(cx, cy, str(i), color='white', fontsize=16, ha='center', va='center', fontweight='bold')
ax.axis('off')
st.pyplot(fig)
# Ask user to choose
mask_index = st.number_input(f"Choose Mask Index (0 to {len(masks)-1})", min_value=0, max_value=len(masks)-1, value=0)
inpainting_prompt = st.text_input("Enter your Inpainting Prompt", "a skirt full of text")
generate_btn = st.button("Generate Inpainting")
if generate_btn:
selected_mask = masks[mask_index]['segmentation']
stable_diffusion_mask = Image.fromarray(selected_mask * 255).convert("RGB")
pipe = load_pipeline()
generator = torch.Generator(device="cpu").manual_seed(77)
num_images = 4
images = []
for _ in range(num_images):
image = pipe(
prompt=inpainting_prompt,
guidance_scale=7.5,
num_inference_steps=60,
generator=generator,
image=source_image,
mask_image=stable_diffusion_mask
).images[0]
images.append(image)
# Show Grid
create_image_grid(source_image, images, [inpainting_prompt]*num_images, 2, 3)
|