Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import joblib
|
| 4 |
+
|
| 5 |
+
from sklearn import preprocessing
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
st.sidebar.header('User Input Parameters')
|
| 10 |
+
|
| 11 |
+
def user_input_features():
|
| 12 |
+
fligh_number = st.number_input("Insert a FlightNumber")
|
| 13 |
+
payload_mass = st.sidebar.slider('Payload Mass', 350, 30000, 1000)
|
| 14 |
+
|
| 15 |
+
flights = st.sidebar.slider('Flights', 1, 6, 3)
|
| 16 |
+
|
| 17 |
+
block = st.sidebar.slider('Block', 1,5,1 )
|
| 18 |
+
orbit = st.sidebar.selectbox('Orbit',('LEO', 'ISS', 'PO', 'GTO', 'ES-L1', 'SSO', 'HEO', 'MEO', 'VLEO',
|
| 19 |
+
'SO', 'GEO'))
|
| 20 |
+
|
| 21 |
+
reused_count = st.number_input('Insert a ReusedCount')
|
| 22 |
+
|
| 23 |
+
launch_site = st.sidebar.selectbox('LaunchSite',('CCAFS SLC 40', 'VAFB SLC 4E', 'KSC LC 39A'))
|
| 24 |
+
|
| 25 |
+
LandingPad = st.sidebar.selectbox('LandingPad',('5e9e3032383ecb761634e7cb', '5e9e3032383ecb6bb234e7ca',
|
| 26 |
+
'5e9e3032383ecb267a34e7c7', '5e9e3033383ecbb9e534e7cc',
|
| 27 |
+
'5e9e3032383ecb554034e7c9'))
|
| 28 |
+
|
| 29 |
+
serial = st.sidebar.selectbox('Serial',('B0003', 'B0005', 'B0007', 'B1003', 'B1004', 'B1005', 'B1006',
|
| 30 |
+
'B1007', 'B1008', 'B1011', 'B1010', 'B1012', 'B1013', 'B1015',
|
| 31 |
+
'B1016', 'B1018', 'B1019', 'B1017', 'B1020', 'B1021', 'B1022',
|
| 32 |
+
'B1023', 'B1025', 'B1026', 'B1028', 'B1029', 'B1031', 'B1030',
|
| 33 |
+
'B1032', 'B1034', 'B1035', 'B1036', 'B1037', 'B1039', 'B1038',
|
| 34 |
+
'B1040', 'B1041', 'B1042', 'B1043', 'B1044', 'B1045', 'B1046',
|
| 35 |
+
'B1047', 'B1048', 'B1049', 'B1050', 'B1054', 'B1051', 'B1056',
|
| 36 |
+
'B1059', 'B1058', 'B1060', 'B1062'))
|
| 37 |
+
|
| 38 |
+
gridfins = st.sidebar.selectbox('GridFins', (False, True))
|
| 39 |
+
|
| 40 |
+
reused = st.sidebar.selectbox('Reused', (False, True))
|
| 41 |
+
|
| 42 |
+
legs = st.sidebar.selectbox('Legs', (False, True))
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
data = {'FlightNumber' : fligh_number ,
|
| 46 |
+
'PayloadMass': payload_mass,
|
| 47 |
+
'flights' : flights,
|
| 48 |
+
'block' : block ,
|
| 49 |
+
'ReusedCount' : reused_count ,
|
| 50 |
+
'Orbit': orbit,
|
| 51 |
+
'LaunchSite' : launch_site ,
|
| 52 |
+
'LandingPad' : LandingPad ,
|
| 53 |
+
'Serial' : serial ,
|
| 54 |
+
'GridFins' : gridfins ,
|
| 55 |
+
'Reused' : reused ,
|
| 56 |
+
'Legs' : legs
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
features = pd.DataFrame(data, index=[0])
|
| 60 |
+
return features
|
| 61 |
+
|
| 62 |
+
df = user_input_features()
|
| 63 |
+
|
| 64 |
+
data = pd.read_csv('dataset_part_2.csv')
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
orbit = pd.get_dummies(data['Orbit'], prefix="Orbit")
|
| 68 |
+
launch_site = pd.get_dummies(data['LaunchSite'], prefix="LaunchSite")
|
| 69 |
+
landing_pad = pd.get_dummies(data['LandingPad'], prefix="LandingPad")
|
| 70 |
+
serial = pd.get_dummies(data['Serial'],prefix='Serial')
|
| 71 |
+
gridfin = pd.get_dummies(data['GridFins'],prefix= 'GridFins')
|
| 72 |
+
reused = pd.get_dummies(data['Reused'], prefix= 'Reused')
|
| 73 |
+
legs = pd.get_dummies(data['Legs'],prefix= 'Legs')
|
| 74 |
+
|
| 75 |
+
df.drop(['Orbit', 'LaunchSite', 'LandingPad','Serial','GridFins','Reused','Legs'], axis=1, inplace=True)
|
| 76 |
+
|
| 77 |
+
#Concatenate the one-hot-encoded columns with the original DataFrame
|
| 78 |
+
df = pd.concat([df,orbit, launch_site, landing_pad,serial,gridfin,reused,legs], axis=1)
|
| 79 |
+
|
| 80 |
+
x_input = pd.DataFrame(df.iloc[0])
|
| 81 |
+
x_input = x_input.transpose()
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
transform = preprocessing.StandardScaler()
|
| 85 |
+
X = transform.fit_transform(x_input)
|
| 86 |
+
X
|
| 87 |
+
print(X)
|
| 88 |
+
st.write(X)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
# # Load the CSV file (replace with your file path or URL)
|
| 92 |
+
# url = 'https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/dataset_part_3.csv'
|
| 93 |
+
# df = pd.read_csv(url)
|
| 94 |
+
|
| 95 |
+
# Load the pickle model (replace with your model path)
|
| 96 |
+
model_path = 'decision_tree.joblib'
|
| 97 |
+
# with open(model_path, 'rb') as file:
|
| 98 |
+
# model = pickle.load(file)
|
| 99 |
+
model = joblib.load(model_path)
|
| 100 |
+
|
| 101 |
+
st.write('Model is loaded successfully')
|
| 102 |
+
|
| 103 |
+
pred = model.predict(x_input_sc)
|
| 104 |
+
|
| 105 |
+
st.title("SpaceX Stage 1 Failed Predictor")
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# # Display the DataFrame
|
| 109 |
+
# st.write("Data Preview")
|
| 110 |
+
# st.dataframe(df.head())
|
| 111 |
+
|
| 112 |
+
# # Select parameters from the header
|
| 113 |
+
# st.write("Select Parameters for Prediction")
|
| 114 |
+
# parameters = st.multiselect("Select columns to use for prediction", options=df.columns)
|
| 115 |
+
|
| 116 |
+
# # Input values for the selected parameters
|
| 117 |
+
# input_data = {}
|
| 118 |
+
# for param in parameters:
|
| 119 |
+
# input_data[param] = st.number_input(f"Input value for {param}", value=0.0)
|
| 120 |
+
|
| 121 |
+
# # Convert input data to DataFrame
|
| 122 |
+
# input_df = pd.DataFrame([input_data])
|
| 123 |
+
|
| 124 |
+
# # Prediction
|
| 125 |
+
if st.button("Submit"):
|
| 126 |
+
classes = ['Failed','Success']
|
| 127 |
+
prediction = model.predict(x_input_sc)
|
| 128 |
+
st.write(f"Prediction: {prediction[0]}")
|
| 129 |
+
|