# /// script # dependencies = [ # "torch", # "numpy", # "kernels", # ] # /// import torch from torch import nn from torch.nn import functional as F from kernels import get_kernel, get_local_kernel from utils import to_dtype, tensor_stats, set_seed, bench_context from config import ( NUM_EXPERTS, HIDDEN_SIZE, TOP_K, BATCH_SIZE, SEQ_LEN, DTYPE, DEVICE, WEIGHT_SEED, EXPERT_SEED, INPUT_SEED, GENERAL_SEED ) from pathlib import Path from collections import namedtuple import os # Discover the upstream artifact directory from env data_dir = os.environ.get('UVNOTE_INPUT_SAVE_DATA', '.') print(f"Loading weights from: {data_dir}") router_weight = torch.load(Path(data_dir) / 'router_weight.pt') router_bias = torch.load(Path(data_dir) / 'router_bias.pt') gate_up_proj = torch.load(Path(data_dir) / 'gate_up_proj.pt') gate_up_proj_bias = torch.load(Path(data_dir) / 'gate_up_proj_bias.pt') down_proj = torch.load(Path(data_dir) / 'down_proj.pt') down_proj_bias = torch.load(Path(data_dir) / 'down_proj_bias.pt') print("Loaded shared weights from artifacts") print(f"Router weight sum: {router_weight.sum().item():.6f}") print(f"Gate/up sum: {gate_up_proj.sum().item():.6f}") print(f"Down sum: {down_proj.sum().item():.6f}") def build_megablocks_model(device: torch.device, dtype: torch.dtype): # Download optimized kernels from the Hugging Face hub megablocks = get_kernel("kernels-community/megablocks") # megablocks = get_local_kernel( # Path("/home/ubuntu/Projects/megablocks-moe/build"), "megablocks") model = megablocks.layers.MegaBlocksMoeMLP() # Create attribute container for expert weights model.experts = namedtuple( "Experts", ["gate_up_proj", "gate_up_proj_bias", "down_proj", "down_proj_bias", "hidden_size"] ) # Use loaded router weights for consistency model.router = torch.nn.Linear(HIDDEN_SIZE, NUM_EXPERTS, device=device, dtype=dtype) with torch.no_grad(): model.router.weight.copy_(router_weight.to(dtype)) model.router.bias.copy_(router_bias.to(dtype)) # Attach loaded expert weights to the experts container e = model.experts e.alpha = 1.702 e.capacity_factor = 4 e.gate_up_proj = torch.nn.Parameter(gate_up_proj.clone().to(device, dtype=dtype)) e.gate_up_proj_bias = torch.nn.Parameter(gate_up_proj_bias.clone().to(device, dtype=dtype)) e.down_proj = torch.nn.Parameter(down_proj.clone().to(device, dtype=dtype)) e.down_proj_bias = torch.nn.Parameter(down_proj_bias.clone().to(device, dtype=dtype)) e.hidden_size = HIDDEN_SIZE # Log weight statistics for comparison print(f"[MegaBlocks] Router weight sum: {model.router.weight.sum().item():.6f}") print(f"[MegaBlocks] Gate/up projection shape: {tuple(e.gate_up_proj.shape)}, sum: {e.gate_up_proj.sum().item():.6f}") print(f"[MegaBlocks] Down projection shape: {tuple(e.down_proj.shape)}, sum: {e.down_proj.sum().item():.6f}") return model # Create a wrapper to match the interface of other implementations class MegaBlocksMoEWrapper(nn.Module): def __init__(self, megablocks_model): super().__init__() self.model = megablocks_model def forward(self, hidden_states): # MegaBlocks expects input in the format (batch, seq_len, hidden_dim) output, dummy_routing_weights = self.model(hidden_states) # Return output and dummy routing weights for consistency with other implementations # dummy_routing_weights = torch.zeros( # hidden_states.shape[0] * hidden_states.shape[1], # NUM_EXPERTS, # device=hidden_states.device, # dtype=hidden_states.dtype # ) return output, dummy_routing_weights # Run the model set_seed(GENERAL_SEED) device = torch.device(DEVICE) dtype = to_dtype(DTYPE) print("\n=== MegaBlocks Implementation ===") # Build MegaBlocks model with loaded weights megablocks_model = build_megablocks_model(device, dtype) model = MegaBlocksMoEWrapper(megablocks_model).to(device=device, dtype=dtype) # Benchmark the model using different input tensors on each iteration tokens = BATCH_SIZE * SEQ_LEN input_shape = (BATCH_SIZE, SEQ_LEN, HIDDEN_SIZE) with bench_context(warmup=10, iters=50, device=device, dtype=dtype, tokens=tokens, save_json="megablocks_results.json", input_shape=input_shape, input_seed_base=INPUT_SEED) as bench: output, stats = bench(model) print(f"\nOutput sum: {output[0].sum().item():.6f}")