Spaces:
Runtime error
Runtime error
import base64 | |
import logging | |
import re | |
import time | |
from functools import partial | |
from io import BytesIO | |
import gradio as gr | |
import torch | |
from extensions.multimodal.multimodal_embedder import MultimodalEmbedder | |
from modules import shared | |
params = { | |
"add_all_images_to_prompt": False, | |
# device to run vision encoder on | |
"vision_device": None, | |
# bits to load vision encoder in, either 16 or 32 | |
"vision_bits": 32, | |
# device to run multimodal projector on | |
"projector_device": None, | |
# multimodal projector bits, either 32 or 16 | |
"projector_bits": 32 | |
} | |
# If 'state' is True, will hijack the next chat generation | |
input_hijack = { | |
'state': False, | |
'value': ["", ""] | |
} | |
# initialized in ui, so that params are loaded from settings | |
multimodal_embedder: MultimodalEmbedder = None | |
def add_chat_picture(picture, text, visible_text): | |
# resize the image, so that shortest edge is at least 224 (size for CLIP), and at most 300 (to keep history manageable) | |
max_hw, min_hw = max(picture.size), min(picture.size) | |
aspect_ratio = max_hw / min_hw | |
shortest_edge = int(max(300 / aspect_ratio, 224)) | |
longest_edge = int(shortest_edge * aspect_ratio) | |
w = shortest_edge if picture.width < picture.height else longest_edge | |
h = shortest_edge if picture.width >= picture.height else longest_edge | |
picture = picture.resize((w, h)) | |
buffer = BytesIO() | |
picture.save(buffer, format="JPEG") | |
img_str = base64.b64encode(buffer.getvalue()).decode('utf-8') | |
image = f'<img src="data:image/jpeg;base64,{img_str}">' | |
if '<image>' in text: | |
text = text.replace('<image>', image) | |
else: | |
text = text + '\n' + image | |
if visible_text == '' or visible_text is None: | |
visible_text = text | |
elif '<image>' in visible_text: | |
visible_text = visible_text.replace('<image>', image) | |
else: | |
visible_text = visible_text + '\n' + image | |
return text, visible_text | |
def custom_tokenized_length(prompt): | |
return multimodal_embedder.len_in_tokens(prompt) | |
def tokenizer_modifier(state, prompt, input_ids, input_embeds): | |
global params | |
start_ts = time.time() | |
image_match = re.search(r'<img src="data:image/jpeg;base64,[A-Za-z0-9+/=]+">', prompt) | |
if image_match is None: | |
return prompt, input_ids, input_embeds | |
prompt, input_ids, input_embeds, total_embedded = multimodal_embedder.forward(prompt, state, params) | |
logging.info(f'Embedded {total_embedded} image(s) in {time.time()-start_ts:.2f}s') | |
return (prompt, | |
input_ids.unsqueeze(0).to(shared.model.device, dtype=torch.int64), | |
input_embeds.unsqueeze(0).to(shared.model.device, dtype=shared.model.dtype)) | |
def ui(): | |
global multimodal_embedder | |
multimodal_embedder = MultimodalEmbedder(params) | |
with gr.Column(): | |
picture_select = gr.Image(label='Send a picture', type='pil') | |
# The models don't seem to deal well with multiple images | |
single_image_checkbox = gr.Checkbox(False, label='Embed all images, not only the last one') | |
# Prepare the input hijack | |
picture_select.upload( | |
lambda picture: input_hijack.update({"state": True, "value": partial(add_chat_picture, picture)}), | |
[picture_select], | |
None | |
) | |
picture_select.clear(lambda: input_hijack.update({"state": False, "value": ["", ""]}), None, None) | |
single_image_checkbox.change(lambda x: params.update({"add_all_images_to_prompt": x}), single_image_checkbox, None) | |
shared.gradio['Generate'].click(lambda: None, None, picture_select) | |
shared.gradio['textbox'].submit(lambda: None, None, picture_select) | |