Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
|
@@ -78,9 +78,8 @@ def segment_with_boxs(
|
|
| 78 |
use_retina=True,
|
| 79 |
mask_random_color=True,
|
| 80 |
):
|
| 81 |
-
|
| 82 |
if len(global_points) < 2:
|
| 83 |
-
return seg_image
|
| 84 |
print("Original Image : ", image.size)
|
| 85 |
|
| 86 |
input_size = int(input_size)
|
|
@@ -104,7 +103,7 @@ def segment_with_boxs(
|
|
| 104 |
|
| 105 |
if scaled_points.size == 0 and scaled_point_label.size == 0:
|
| 106 |
print("No points selected")
|
| 107 |
-
return image
|
| 108 |
|
| 109 |
nd_image = np.array(image)
|
| 110 |
img_tensor = ToTensor()(nd_image)
|
|
@@ -171,7 +170,6 @@ def segment_with_points(
|
|
| 171 |
use_retina=True,
|
| 172 |
mask_random_color=True,
|
| 173 |
):
|
| 174 |
-
print("Starting getting points")
|
| 175 |
print("Original Image : ", image.size)
|
| 176 |
|
| 177 |
input_size = int(input_size)
|
|
@@ -185,9 +183,9 @@ def segment_with_points(
|
|
| 185 |
print("Scale : ", scale)
|
| 186 |
|
| 187 |
if global_points is None:
|
| 188 |
-
return image
|
| 189 |
if len(global_points) < 1:
|
| 190 |
-
return image
|
| 191 |
scaled_points = np.array(
|
| 192 |
[[int(x * scale) for x in point] for point in global_points]
|
| 193 |
)
|
|
@@ -198,7 +196,7 @@ def segment_with_points(
|
|
| 198 |
|
| 199 |
if scaled_points.size == 0 and scaled_point_label.size == 0:
|
| 200 |
print("No points selected")
|
| 201 |
-
return image
|
| 202 |
|
| 203 |
nd_image = np.array(image)
|
| 204 |
img_tensor = ToTensor()(nd_image)
|
|
@@ -273,7 +271,7 @@ def get_points_with_draw_(image, cond_image, global_points, global_point_label,
|
|
| 273 |
if len(global_points) == 0:
|
| 274 |
image = copy.deepcopy(cond_image)
|
| 275 |
if len(global_points) > 2:
|
| 276 |
-
return image
|
| 277 |
x, y = evt.index[0], evt.index[1]
|
| 278 |
label = "Add Mask"
|
| 279 |
point_radius, point_color = 15, (255, 255, 0) if label == "Add Mask" else (
|
|
|
|
| 78 |
use_retina=True,
|
| 79 |
mask_random_color=True,
|
| 80 |
):
|
|
|
|
| 81 |
if len(global_points) < 2:
|
| 82 |
+
return seg_image, global_points, global_point_label
|
| 83 |
print("Original Image : ", image.size)
|
| 84 |
|
| 85 |
input_size = int(input_size)
|
|
|
|
| 103 |
|
| 104 |
if scaled_points.size == 0 and scaled_point_label.size == 0:
|
| 105 |
print("No points selected")
|
| 106 |
+
return image, global_points, global_point_label
|
| 107 |
|
| 108 |
nd_image = np.array(image)
|
| 109 |
img_tensor = ToTensor()(nd_image)
|
|
|
|
| 170 |
use_retina=True,
|
| 171 |
mask_random_color=True,
|
| 172 |
):
|
|
|
|
| 173 |
print("Original Image : ", image.size)
|
| 174 |
|
| 175 |
input_size = int(input_size)
|
|
|
|
| 183 |
print("Scale : ", scale)
|
| 184 |
|
| 185 |
if global_points is None:
|
| 186 |
+
return image, global_points, global_point_label
|
| 187 |
if len(global_points) < 1:
|
| 188 |
+
return image, global_points, global_point_label
|
| 189 |
scaled_points = np.array(
|
| 190 |
[[int(x * scale) for x in point] for point in global_points]
|
| 191 |
)
|
|
|
|
| 196 |
|
| 197 |
if scaled_points.size == 0 and scaled_point_label.size == 0:
|
| 198 |
print("No points selected")
|
| 199 |
+
return image, global_points, global_point_label
|
| 200 |
|
| 201 |
nd_image = np.array(image)
|
| 202 |
img_tensor = ToTensor()(nd_image)
|
|
|
|
| 271 |
if len(global_points) == 0:
|
| 272 |
image = copy.deepcopy(cond_image)
|
| 273 |
if len(global_points) > 2:
|
| 274 |
+
return image, global_points, global_point_label
|
| 275 |
x, y = evt.index[0], evt.index[1]
|
| 276 |
label = "Add Mask"
|
| 277 |
point_radius, point_color = 15, (255, 255, 0) if label == "Add Mask" else (
|