Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces | |
| import torch | |
| from diffusers import FluxPipeline, FluxTransformer2DModel,FlowMatchEulerDiscreteScheduler, AutoencoderKL | |
| from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast | |
| dtype = torch.bfloat16 | |
| device = "cuda" | |
| sd3_repo = "stabilityai/stable-diffusion-3-medium-diffusers" | |
| scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained (sd3_repo, subfolder="scheduler") | |
| text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype) | |
| tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype) | |
| text_encoder_2 = T5EncoderModel.from_pretrained(sd3_repo, subfolder="text_encoder_3", torch_dtype=dtype) | |
| tokenizer_2 = T5TokenizerFast.from_pretrained(sd3_repo, subfolder="tokenizer_3", torch_dtype=dtype) | |
| vae = AutoencoderKL.from_pretrained("diffusers-internal-dev/FLUX.1-schnell", subfolder="vae", torch_dtype=dtype) | |
| transformer = FluxTransformer2DModel.from_pretrained("diffusers-internal-dev/FLUX.1-schnell", subfolder="transformer", torch_dtype=dtype) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = FluxPipeline( | |
| scheduler=scheduler, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer_2=tokenizer_2, | |
| vae=vae, | |
| transformer=transformer, | |
| ).to("cuda") | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt = prompt, | |
| width = width, | |
| height = height, | |
| num_inference_steps = num_inference_steps, | |
| generator = generator, | |
| guidance_scale=0.0 | |
| ).images[0] | |
| return image, seed | |
| examples = [ | |
| "a tiny astronaut hatching from an egg on the moon", | |
| "a cat holding a sign that says hello world", | |
| "an anime illustration of a wiener schnitzel", | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 550px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f""" | |
| # FLUX.1 Schnell | |
| 12B param rectified flow transformer distilled from [FLUX.1 Pro](https://blackforestlabs.ai/) for 4 step generation | |
| [[blog](https://blackforestlabs.ai/2024/07/31/announcing-black-forest-labs/) [model](https://black-forest-labs/FLUX.1-schnell)] | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=4, | |
| ) | |
| gr.Examples( | |
| examples = examples, | |
| fn = infer, | |
| inputs = [prompt], | |
| outputs = [result, seed], | |
| cache_examples="lazy" | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn = infer, | |
| inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps], | |
| outputs = [result, seed] | |
| ) | |
| demo.launch() |