Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer | |
| from transformers.image_utils import load_image | |
| from threading import Thread | |
| import re | |
| import time | |
| import torch | |
| import spaces | |
| import re | |
| import ast | |
| import html | |
| import random | |
| from PIL import Image, ImageOps | |
| from docling_core.types.doc import DoclingDocument | |
| from docling_core.types.doc.document import DocTagsDocument | |
| def add_random_padding(image, min_percent=0.1, max_percent=0.10): | |
| image = image.convert("RGB") | |
| width, height = image.size | |
| pad_w_percent = random.uniform(min_percent, max_percent) | |
| pad_h_percent = random.uniform(min_percent, max_percent) | |
| pad_w = int(width * pad_w_percent) | |
| pad_h = int(height * pad_h_percent) | |
| corner_pixel = image.getpixel((0, 0)) # Top-left corner | |
| padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel) | |
| return padded_image | |
| def normalize_values(text, target_max=500): | |
| def normalize_list(values): | |
| max_value = max(values) if values else 1 | |
| return [round((v / max_value) * target_max) for v in values] | |
| def process_match(match): | |
| num_list = ast.literal_eval(match.group(0)) | |
| normalized = normalize_list(num_list) | |
| return "".join([f"<loc_{num}>" for num in normalized]) | |
| pattern = r"\[([\d\.\s,]+)\]" | |
| normalized_text = re.sub(pattern, process_match, text) | |
| return normalized_text | |
| processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
| model = AutoModelForVision2Seq.from_pretrained("ds4sd/SmolDocling-256M-preview", | |
| torch_dtype=torch.bfloat16, | |
| #_attn_implementation="flash_attention_2" | |
| ).to("cuda") | |
| def model_inference( | |
| input_dict, history | |
| ): | |
| text = input_dict["text"] | |
| print(input_dict["files"]) | |
| if len(input_dict["files"]) > 1: | |
| if "OTSL" in text or "code" in text: | |
| images = [add_random_padding(load_image(image)) for image in input_dict["files"]] | |
| else: | |
| images = [load_image(image) for image in input_dict["files"]] | |
| elif len(input_dict["files"]) == 1: | |
| if "OTSL" in text or "code" in text: | |
| images = [add_random_padding(load_image(input_dict["files"][0]))] | |
| else: | |
| images = [load_image(input_dict["files"][0])] | |
| else: | |
| images = [] | |
| if text == "" and not images: | |
| gr.Error("Please input a query and optionally image(s).") | |
| if text == "" and images: | |
| gr.Error("Please input a text query along the image(s).") | |
| if "OCR at text at" in text or "Identify element" in text or "formula" in text: | |
| text = normalize_values(text, target_max=500) | |
| resulting_messages = [ | |
| { | |
| "role": "user", | |
| "content": [{"type": "image"} for _ in range(len(images))] + [ | |
| {"type": "text", "text": text} | |
| ] | |
| } | |
| ] | |
| prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True) | |
| inputs = processor(text=prompt, images=[images], return_tensors="pt").to('cuda') | |
| generation_args = { | |
| "input_ids": inputs.input_ids, | |
| "pixel_values": inputs.pixel_values, | |
| "attention_mask": inputs.attention_mask, | |
| "num_return_sequences": 1, | |
| "no_repeat_ngram_size": 10, | |
| "max_new_tokens": 8192, | |
| } | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=False) | |
| generation_args = dict(inputs, streamer=streamer, max_new_tokens=8192) | |
| thread = Thread(target=model.generate, kwargs=generation_args) | |
| thread.start() | |
| yield "..." | |
| buffer = "" | |
| doctag_output = "" | |
| for new_text in streamer: | |
| if new_text != "<end_of_utterance>": | |
| buffer += html.escape(new_text) | |
| doctag_output += new_text | |
| yield buffer | |
| if any(tag in doctag_output for tag in ["<doctag>", "<otsl>", "<code>", "<formula>", "<chart>"]): | |
| # final_output = buffer | |
| # cleaned_output = final_output[len(inputs.input_ids):] if len(final_output) > prompt_length else final_output | |
| doc = DoclingDocument(name="Document") | |
| if "<chart>" in doctag_output: | |
| doctag_output = doctag_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>") | |
| doctag_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', doctag_output) | |
| doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctag_output], images) | |
| doc.load_from_doctags(doctags_doc) | |
| yield f"**MD Output:**\n\n{doc.export_to_markdown()}" | |
| examples=[[{"text": "Convert this page to docling.", "files": ["example_images/2d0fbcc50e88065a040a537b717620e964fb4453314b71d83f3ed3425addcef6.png"]}], | |
| [{"text": "Convert this table to OTSL.", "files": ["example_images/image-2.jpg"]}], | |
| [{"text": "Convert code to text.", "files": ["example_images/7666.jpg"]}], | |
| [{"text": "Convert formula to latex.", "files": ["example_images/2433.jpg"]}], | |
| [{"text": "Convert chart to OTSL.", "files": ["example_images/06236926002285.png"]}], | |
| [{"text": "OCR the text in location [47, 531, 167, 565]", "files": ["example_images/s2w_example.png"]}], | |
| [{"text": "Extract all section header elements on the page.", "files": ["example_images/paper_3.png"]}], | |
| [{"text": "Identify element at location [123, 413, 1059, 1061]", "files": ["example_images/redhat.png"]}], | |
| [{"text": "Convert this page to docling.", "files": ["example_images/gazette_de_france.jpg"]}], | |
| ] | |
| demo = gr.ChatInterface(fn=model_inference, title="SmolDocling-256M: Ultra-compact VLM for Document Conversion π«", | |
| description="Play with [ds4sd/SmolDocling-256M-preview](https://huggingface.co/ds4sd/SmolDocling-256M-preview) in this demo. To get started, upload an image and text or try one of the examples. This demo doesn't use history for the chat, so every chat you start is a new conversation.", | |
| examples=examples, | |
| textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, | |
| cache_examples=False | |
| ) | |
| demo.launch(debug=True) |