import os from dotenv import load_dotenv import openai import chainlit as cl from langchain_community.document_loaders import PyMuPDFLoader from operator import itemgetter from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.schema.output_parser import StrOutputParser from langchain.schema.runnable import RunnablePassthrough from langchain.schema.runnable.config import RunnableConfig from langchain import hub from langchain_community.vectorstores import Qdrant from langchain.prompts import ChatPromptTemplate from langchain_openai import OpenAIEmbeddings from langchain_openai import ChatOpenAI import json load_dotenv() OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] openai.api_key = OPENAI_API_KEY # Load PDF loader = PyMuPDFLoader("./AirBnB10Q.pdf") documents = loader.load() # Split Document text_splitter = RecursiveCharacterTextSplitter( chunk_size=300, chunk_overlap=50 ) documents = text_splitter.split_documents(documents) # Load OpenAI Embeddings embeddings = OpenAIEmbeddings(model="text-embedding-ada-002") # Load Qdrant Vector Store qdrant_vector_store = Qdrant.from_documents( documents, embeddings, location=":memory:", collection_name="AirBnB10Q" ) retriever = qdrant_vector_store.as_retriever() # Pull LangChain QA Prompt Template retrieval_qa_prompt = hub.pull("langchain-ai/retrieval-qa-chat") template = """You are a helpful assistant. Use only the context available in the file. The file is a PDF and is a company filing submitted to the SEC. Pages include company information and detailed reports about financial performance. Pages contain tables, where some key information is found. Table columns include name, title, and shares owned. Do not make up any information that is not in the file. Use the context provided in the file to answer the questions. Explain your answer by describing how you arrived at the answer: Context: {context} Question: {query} """ rag_prompt = ChatPromptTemplate.from_template(template) qa_llm = ChatOpenAI(model_name="gpt-4o", temperature=0) @cl.on_chat_start async def start_chat(): """ This function will be called at the start of every user session. We will build our LCEL RAG chain here, and store it in the user session. The user session is a dictionary that is unique to each user session, and is stored in the memory of the server. """ ### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT lcel_rag_chain = ( {"context": itemgetter("query") | retriever, "query": itemgetter("query")} | rag_prompt | qa_llm ) cl.user_session.set("lcel_rag_chain", lcel_rag_chain) @cl.on_message async def main(message: cl.Message): """ This function will be called every time a message is recieved from a session. We will use the LCEL RAG chain to generate a response to the user query. The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here. """ lcel_rag_chain = cl.user_session.get("lcel_rag_chain") msg = cl.Message(content="") async for chunk in lcel_rag_chain.astream( {"query": message.content}, config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]), ): if isinstance(chunk, dict) and 'content' in chunk: await msg.stream_token(chunk['content']) elif hasattr(chunk, 'content'): await msg.stream_token(chunk.content) elif isinstance(chunk, str): await msg.stream_token(chunk) await msg.send()