Spaces:
Paused
Paused
import os | |
from dotenv import load_dotenv | |
import openai | |
import chainlit as cl | |
from langchain_community.document_loaders import PyMuPDFLoader | |
from operator import itemgetter | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.schema.output_parser import StrOutputParser | |
from langchain.schema.runnable import RunnablePassthrough | |
from langchain.schema.runnable.config import RunnableConfig | |
from langchain import hub | |
from langchain_community.vectorstores import Qdrant | |
from langchain.prompts import ChatPromptTemplate | |
from langchain_openai import OpenAIEmbeddings | |
from langchain_openai import ChatOpenAI | |
import json | |
load_dotenv() | |
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] | |
openai.api_key = OPENAI_API_KEY | |
# Load PDF | |
loader = PyMuPDFLoader("AirBnB10Q.pdf") | |
documents = loader.load() | |
# Split Document | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=300, | |
chunk_overlap=50 | |
) | |
documents = text_splitter.split_documents(documents) | |
# Load OpenAI Embeddings | |
embeddings = OpenAIEmbeddings(model="text-embedding-ada-002") | |
# Load Qdrant Vector Store | |
qdrant_vector_store = Qdrant.from_documents( | |
documents, | |
embeddings, | |
location=":memory:", | |
collection_name="AirBnB10Q" | |
) | |
retriever = qdrant_vector_store.as_retriever() | |
# Pull LangChain QA Prompt Template | |
retrieval_qa_prompt = hub.pull("langchain-ai/retrieval-qa-chat") | |
template = """Answer the question based only on the following context. If you cannot answer the question with the context, please respond with 'I don't know': | |
Context: | |
{context} | |
Question: | |
{query} | |
""" | |
rag_prompt = ChatPromptTemplate.from_template(template) | |
qa_llm = ChatOpenAI(model_name="gpt-4o", temperature=0) | |
async def start_chat(): | |
""" | |
This function will be called at the start of every user session. | |
We will build our LCEL RAG chain here, and store it in the user session. | |
The user session is a dictionary that is unique to each user session, and is stored in the memory of the server. | |
""" | |
### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT | |
lcel_rag_chain = ( | |
{"context": itemgetter("query") | retriever, "query": itemgetter("query")} | |
| rag_prompt | qa_llm | |
) | |
cl.user_session.set("lcel_rag_chain", lcel_rag_chain) | |
async def main(message: cl.Message): | |
""" | |
This function will be called every time a message is recieved from a session. | |
We will use the LCEL RAG chain to generate a response to the user query. | |
The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here. | |
""" | |
lcel_rag_chain = cl.user_session.get("lcel_rag_chain") | |
msg = cl.Message(content="") | |
async for chunk in lcel_rag_chain.astream( | |
{"query": message.content}, | |
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]), | |
): | |
if isinstance(chunk, dict) and 'content' in chunk: | |
await msg.stream_token(chunk['content']) | |
elif hasattr(chunk, 'content'): | |
await msg.stream_token(chunk.content) | |
elif isinstance(chunk, str): | |
await msg.stream_token(chunk) | |
await msg.send() |