Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Load models and tokenizers
|
| 6 |
+
sarcasm_tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-base")
|
| 7 |
+
sarcasm_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sarcasm-Detection-Customer-Reviews")
|
| 8 |
+
sentiment_tokenizer = AutoTokenizer.from_pretrained("facebook/roberta-base")
|
| 9 |
+
sentiment_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sentiment-Analysis-Customer-Reviews")
|
| 10 |
+
|
| 11 |
+
def process_text_pipeline(user_input):
|
| 12 |
+
sentences = user_input.split("\n")
|
| 13 |
+
results = []
|
| 14 |
+
for sentence in sentences:
|
| 15 |
+
# Sentiment analysis
|
| 16 |
+
sentiment_inputs = sentiment_tokenizer(sentence, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 17 |
+
with torch.no_grad():
|
| 18 |
+
sentiment_outputs = sentiment_model(**sentiment_inputs)
|
| 19 |
+
sentiment_logits = sentiment_outputs.logits
|
| 20 |
+
sentiment_class = torch.argmax(sentiment_logits, dim=-1).item()
|
| 21 |
+
sentiment = "Positive" if sentiment_class == 0 else "Negative"
|
| 22 |
+
|
| 23 |
+
# Sarcasm detection for positive sentences
|
| 24 |
+
if sentiment == "Positive":
|
| 25 |
+
sarcasm_inputs = sarcasm_tokenizer(sentence, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
sarcasm_outputs = sarcasm_model(**sarcasm_inputs)
|
| 28 |
+
sarcasm_logits = sarcasm_outputs.logits
|
| 29 |
+
sarcasm_class = torch.argmax(sarcasm_logits, dim=-1).item()
|
| 30 |
+
if sarcasm_class == 1: # Sarcasm detected
|
| 31 |
+
sentiment = "Negative (Sarcasm detected)"
|
| 32 |
+
|
| 33 |
+
results.append(f"{sentence}: {sentiment}")
|
| 34 |
+
return "\n".join(results)
|
| 35 |
+
|
| 36 |
+
# Gradio UI
|
| 37 |
+
interface = gr.Interface(
|
| 38 |
+
fn=process_text_pipeline,
|
| 39 |
+
inputs=gr.Textbox(lines=10, placeholder="Enter one or more sentences, each on a new line."),
|
| 40 |
+
outputs="text",
|
| 41 |
+
title="Sarcasm Detection for Customer Reviews",
|
| 42 |
+
description="This web app analyzes the sentiment of customer reviews and detects sarcasm for positive reviews.",
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# Run interface
|
| 46 |
+
if __name__ == "__main__":
|
| 47 |
+
interface.launch()
|