Update utils.py
Browse files
utils.py
CHANGED
@@ -138,25 +138,43 @@ def add_new_eval(
|
|
138 |
else:
|
139 |
print('The entry already exists')
|
140 |
|
141 |
-
|
142 |
def refresh_data():
|
143 |
-
df = get_df()
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
147 |
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
def search_and_filter_models(df, query, min_size, max_size):
|
|
|
|
|
150 |
if query:
|
151 |
-
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
unknown_entries = df[df['Model Size(B)'] == 'unknown']
|
158 |
|
159 |
-
|
|
|
|
|
160 |
|
161 |
|
162 |
def search_models(df, query):
|
@@ -173,10 +191,11 @@ def get_size_range(df):
|
|
173 |
|
174 |
|
175 |
def process_model_size(size):
|
176 |
-
if size == 'unk':
|
177 |
return 'unknown'
|
178 |
try:
|
179 |
-
|
180 |
-
|
|
|
181 |
return 'unknown'
|
182 |
|
|
|
138 |
else:
|
139 |
print('The entry already exists')
|
140 |
|
|
|
141 |
def refresh_data():
|
142 |
+
df = get_df()
|
143 |
+
return df[COLUMN_NAMES]
|
144 |
+
|
145 |
+
# def refresh_data():
|
146 |
+
# df = get_df()
|
147 |
+
# min_size, max_size = get_size_range(df)
|
148 |
+
# filtered_df = search_and_filter_models(df, "", min_size, max_size)
|
149 |
+
# return filtered_df[COLUMN_NAMES]
|
150 |
|
151 |
|
152 |
+
# def search_and_filter_models(df, query, min_size, max_size):
|
153 |
+
# if query:
|
154 |
+
# df = df[df['Models'].str.contains(query, case=False, na=False)]
|
155 |
+
|
156 |
+
# numeric_mask = df['Model Size(B)'].apply(lambda x: isinstance(x, (int, float)))
|
157 |
+
# size_filtered = df[numeric_mask &
|
158 |
+
# (df['Model Size(B)'] >= min_size) &
|
159 |
+
# (df['Model Size(B)'] <= max_size)]
|
160 |
+
# unknown_entries = df[df['Model Size(B)'] == 'unknown']
|
161 |
+
|
162 |
+
# return pd.concat([size_filtered, unknown_entries])[COLUMN_NAMES]
|
163 |
+
|
164 |
def search_and_filter_models(df, query, min_size, max_size):
|
165 |
+
filtered_df = df.copy()
|
166 |
+
|
167 |
if query:
|
168 |
+
filtered_df = filtered_df[filtered_df['Models'].str.contains(query, case=False, na=False)]
|
169 |
|
170 |
+
def size_filter(x):
|
171 |
+
if isinstance(x, (int, float)):
|
172 |
+
return min_size <= x <= max_size
|
173 |
+
return True
|
|
|
174 |
|
175 |
+
filtered_df = filtered_df[filtered_df['Model Size(B)'].apply(size_filter)]
|
176 |
+
|
177 |
+
return filtered_df[COLUMN_NAMES]
|
178 |
|
179 |
|
180 |
def search_models(df, query):
|
|
|
191 |
|
192 |
|
193 |
def process_model_size(size):
|
194 |
+
if pd.isna(size) or size == 'unk':
|
195 |
return 'unknown'
|
196 |
try:
|
197 |
+
val = float(size)
|
198 |
+
return val
|
199 |
+
except (ValueError, TypeError):
|
200 |
return 'unknown'
|
201 |
|