from typing import Dict from speakers.processors import ProcessorData, BaseProcessor, get_processors, BarkProcessorData, RvcProcessorData from speakers.tasks import BaseTask, Runner, FlowData from speakers.common.registry import registry from speakers.server.model.flow_data import PayLoad import traceback import hashlib class BarkVoiceFlowData(FlowData): bark: BarkProcessorData rvc: RvcProcessorData @property def type(self) -> str: """Type of the FlowData Message, used for serialization.""" return "bark_voice" def calculate_md5(input_string): md5_hash = hashlib.md5() md5_hash.update(input_string.encode('utf-8')) return md5_hash.hexdigest() @registry.register_task("bark_voice_task") class BarkVoiceTask(BaseTask): SAMPLE_RATE: int = 22050 def __init__(self, preprocess_dict: Dict[str, BaseProcessor]): super().__init__(preprocess_dict=preprocess_dict) self._preprocess_dict = preprocess_dict @classmethod def from_config(cls, cfg=None): preprocess_dict = {} for preprocess in cfg.get('preprocess'): for key, preprocess_info in preprocess.items(): preprocess_object = get_processors(preprocess_info.processor) preprocess_dict[preprocess_info.processor_name] = preprocess_object return cls(preprocess_dict=preprocess_dict) @property def preprocess_dict(self) -> Dict[str, BaseProcessor]: return self._preprocess_dict @classmethod def prepare(cls, payload: PayLoad) -> Runner: """ runner任务构建 """ params = payload.payload # 获取payload中的vits和rvc的值 bark_data = params.get("bark", {}) rvc_data = params.get("rvc", {}) speaker_history_prompt = bark_data.get("speaker_history_prompt") text_temp = bark_data.get("text_temp") waveform_temp = bark_data.get("waveform_temp") text = bark_data.get("text") # 创建一个 BarkProcessorData 实例 bark_processor_data = BarkProcessorData(text=text, speaker_history_prompt=speaker_history_prompt, text_temp=text_temp, waveform_temp=waveform_temp) # 获取rvc中的值 model_index = rvc_data.get("model_index") # 变调(整数, 半音数量, 升八度12降八度-12) f0_up_key = rvc_data.get("f0_up_key") f0_method = rvc_data.get("f0_method") # 检索特征占比 index_rate = rvc_data.get("index_rate") # >=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音 filter_radius = rvc_data.get("filter_radius") # 输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络 rms_mix_rate = rvc_data.get("rms_mix_rate") # 后处理重采样至最终采样率,0为不进行重采样 resample_rate = rvc_data.get("resample_sr") rvc_protect = rvc_data.get("protect") rvc_f0_file = rvc_data.get("f0_file") rvc_processor_data = RvcProcessorData( model_index=model_index, f0_up_key=f0_up_key, f0_method=f0_method, index_rate=index_rate, filter_radius=filter_radius, rms_mix_rate=rms_mix_rate, resample_sr=resample_rate, f0_file=rvc_f0_file, protect=rvc_protect ) # 创建一个 BarkVoiceFlowData 实例,并将 VitsProcessorData 实例作为参数传递 voice_flow_data = BarkVoiceFlowData(bark=bark_processor_data, rvc=rvc_processor_data) # 创建 Runner 实例并传递上面创建的 BarkVoiceFlowData 实例作为参数 task_id = f'{calculate_md5(text)}-{speaker_history_prompt}-{text_temp}' \ f'-{waveform_temp}' \ f'-{model_index}-{f0_up_key}' runner = Runner( task_id=task_id, flow_data=voice_flow_data ) return runner async def dispatch(self, runner: Runner): try: # 加载task self.logger.info('dispatch') # 开启任务1 await self.report_progress(task_id=runner.task_id, runner_stat='bark_voice_task', state='dispatch_bark_voice_task') data = runner.flow_data if 'bark_voice' in data.type: if 'BARK' in data.bark.type: bark_preprocess_object = self.preprocess_dict.get(data.bark.type) if not bark_preprocess_object.match(data.bark): raise RuntimeError('不支持的process') audio_np = bark_preprocess_object(data.bark) if audio_np is not None and 'RVC' in data.rvc.type: # 将 NumPy 数组转换为 Python 列表 audio_samples_list = audio_np.tolist() data.rvc.sample_rate = self.SAMPLE_RATE data.rvc.audio_samples = audio_samples_list rvc_preprocess_object = self.preprocess_dict.get(data.rvc.type) if not rvc_preprocess_object.match(data.rvc): raise RuntimeError('不支持的process') out_sr, output_audio = rvc_preprocess_object(data.rvc) # 完成任务,构建响应数据 await self.report_progress(task_id=runner.task_id, runner_stat='bark_voice_task', state='finished', finished=True) del audio_np del runner return out_sr, output_audio except Exception as e: await self.report_progress(task_id=runner.task_id, runner_stat='bark_voice_task', state='error', finished=True) self.logger.error(f'{e.__class__.__name__}: {e}', exc_info=e) traceback.print_exc() return None, None def complete(self, runner: Runner): pass