Diego Staphorst
commited on
Commit
·
9e4d4b4
1
Parent(s):
81917a3
feat(langchain) knowledge base
Browse files- .python-version +1 -0
- agent.py +15 -0
- app.py +1 -11
- dataset.py +66 -0
- main.py +6 -0
- pyproject.toml +14 -0
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.12
|
agent.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class BasicAgent:
|
2 |
+
"""
|
3 |
+
A simple agent that returns a fixed answer for any question.
|
4 |
+
"""
|
5 |
+
def __init__(self):
|
6 |
+
print("BasicAgent initialized.")
|
7 |
+
|
8 |
+
def __call__(self, question: str) -> str:
|
9 |
+
"""
|
10 |
+
Processes the question and returns a fixed answer.
|
11 |
+
"""
|
12 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
13 |
+
fixed_answer = "This is a default answer."
|
14 |
+
print(f"Agent returning fixed answer: {fixed_answer}")
|
15 |
+
return fixed_answer
|
app.py
CHANGED
@@ -3,21 +3,11 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
|
|
6 |
|
7 |
-
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
-
# --- Basic Agent Definition ---
|
12 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
-
class BasicAgent:
|
14 |
-
def __init__(self):
|
15 |
-
print("BasicAgent initialized.")
|
16 |
-
def __call__(self, question: str) -> str:
|
17 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
-
fixed_answer = "This is a default answer."
|
19 |
-
print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
-
return fixed_answer
|
21 |
|
22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
+
from agent import BasicAgent # Import the agent
|
7 |
|
|
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
13 |
"""
|
dataset.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from datasets import Dataset
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
|
6 |
+
from tqdm import tqdm
|
7 |
+
from transformers import AutoTokenizer
|
8 |
+
from langchain.docstore.document import Document
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from langchain.vectorstores import FAISS
|
11 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
12 |
+
from langchain_community.vectorstores.utils import DistanceStrategy
|
13 |
+
|
14 |
+
knowledge_base = datasets.load_dataset("gaia-benchmark/GAIA", '2023_level1', split='test')
|
15 |
+
print(knowledge_base.column_names)
|
16 |
+
# ['task_id', 'Question', 'Level', 'Final answer', 'file_name', 'file_path', 'Annotator Metadata']
|
17 |
+
source_docs = [
|
18 |
+
Document(
|
19 |
+
page_content=doc["Question"],
|
20 |
+
metadata={
|
21 |
+
"task_id": doc["task_id"],
|
22 |
+
"level": doc["Level"],
|
23 |
+
"final_answer": doc["Final answer"],
|
24 |
+
"file_name": doc["file_name"],
|
25 |
+
"file_path": doc["file_path"],
|
26 |
+
"annotator_metadata": doc["Annotator Metadata"],
|
27 |
+
},
|
28 |
+
)
|
29 |
+
for doc in knowledge_base
|
30 |
+
]
|
31 |
+
|
32 |
+
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
|
33 |
+
AutoTokenizer.from_pretrained("thenlper/gte-small"),
|
34 |
+
chunk_size=200,
|
35 |
+
chunk_overlap=20,
|
36 |
+
add_start_index=True,
|
37 |
+
strip_whitespace=True,
|
38 |
+
separators=["\n\n", "\n", ".", " ", ""],
|
39 |
+
)
|
40 |
+
|
41 |
+
# Split docs and keep only unique ones
|
42 |
+
print("Splitting documents...")
|
43 |
+
docs_processed = []
|
44 |
+
unique_texts = {}
|
45 |
+
for doc in tqdm(source_docs):
|
46 |
+
new_docs = text_splitter.split_documents([doc])
|
47 |
+
for new_doc in new_docs:
|
48 |
+
if new_doc.page_content not in unique_texts:
|
49 |
+
unique_texts[new_doc.page_content] = True
|
50 |
+
docs_processed.append(new_doc)
|
51 |
+
|
52 |
+
print("Embedding documents... This should take a few minutes (5 minutes on MacBook with M1 Pro)")
|
53 |
+
embedding_model = HuggingFaceEmbeddings(model_name="thenlper/gte-small")
|
54 |
+
vectordb = FAISS.from_documents(
|
55 |
+
documents=docs_processed,
|
56 |
+
embedding=embedding_model,
|
57 |
+
distance_strategy=DistanceStrategy.COSINE,
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
# print(dataset)
|
64 |
+
# ds = Dataset.from_dict(dataset)
|
65 |
+
# dataset = ds.with_format("pandas")
|
66 |
+
print(vectordb)
|
main.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def main():
|
2 |
+
print("Hello from final-assignment-template!")
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == "__main__":
|
6 |
+
main()
|
pyproject.toml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "final-assignment-template"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.12"
|
7 |
+
dependencies = [
|
8 |
+
"datasets>=3.5.1",
|
9 |
+
"gradio[oauth]>=5.28.0",
|
10 |
+
"langchain>=0.3.24",
|
11 |
+
"langchain-community>=0.3.23",
|
12 |
+
"requests>=2.32.3",
|
13 |
+
"transformers>=4.51.3",
|
14 |
+
]
|