Spaces:
Sleeping
Sleeping
Alessio Cocchieri
commited on
Commit
·
9ff961b
1
Parent(s):
aedda6d
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spacy
|
2 |
+
import gradio as gr
|
3 |
+
import json
|
4 |
+
from typing import Dict, List, Tuple, Any
|
5 |
+
|
6 |
+
from zshot import PipelineConfig
|
7 |
+
from zshot.linker import LinkerSMXM
|
8 |
+
from zshot.utils.data_models import Entity
|
9 |
+
|
10 |
+
from spacy.cli import download
|
11 |
+
download("en_core_web_sm")
|
12 |
+
|
13 |
+
# Function to load the NER model
|
14 |
+
def load_model(entity_data):
|
15 |
+
entities = [
|
16 |
+
Entity(
|
17 |
+
name=entity["name"],
|
18 |
+
description=entity["description"],
|
19 |
+
vocabulary=entity.get("vocabulary")
|
20 |
+
) for entity in entity_data
|
21 |
+
]
|
22 |
+
|
23 |
+
nlp = spacy.blank("en")
|
24 |
+
nlp_config = PipelineConfig(
|
25 |
+
linker=LinkerSMXM(model_name="disi-unibo-nlp/openbioner-base"),
|
26 |
+
entities=entities,
|
27 |
+
device='cpu' # Change to 'cpu' if GPU not available
|
28 |
+
)
|
29 |
+
nlp.add_pipe("zshot", config=nlp_config, last=True)
|
30 |
+
|
31 |
+
return nlp
|
32 |
+
|
33 |
+
# Default entities - focusing on BACTERIUM example
|
34 |
+
default_entities = [
|
35 |
+
{
|
36 |
+
"name": "BACTERIUM",
|
37 |
+
"description": "A bacterium refers to a type of microorganism that can exist as a single cell and may cause infections or play a role in various biological processes. Examples include species like Streptococcus pneumoniae and Streptomyces ahygroscopicus.",
|
38 |
+
}
|
39 |
+
]
|
40 |
+
|
41 |
+
# Initialize model with default entities
|
42 |
+
nlp = load_model(default_entities)
|
43 |
+
|
44 |
+
# Function to create HTML visualization of entities
|
45 |
+
def get_entity_html(doc) -> str:
|
46 |
+
colors = {
|
47 |
+
"BACTERIUM": "#8dd3c7",
|
48 |
+
"CHEMICAL": "#fb8072",
|
49 |
+
"DISEASE": "#80b1d3",
|
50 |
+
"GENE": "#fdb462",
|
51 |
+
"SPECIES": "#b3de69"
|
52 |
+
}
|
53 |
+
|
54 |
+
html_parts = []
|
55 |
+
last_idx = 0
|
56 |
+
|
57 |
+
# Display text with highlighted entities
|
58 |
+
for ent in doc.ents:
|
59 |
+
# Add text before the entity
|
60 |
+
html_parts.append(doc.text[last_idx:ent.start_char])
|
61 |
+
|
62 |
+
# Add the highlighted entity
|
63 |
+
color = colors.get(ent.label_, "#ddd")
|
64 |
+
html_parts.append(
|
65 |
+
f'<span style="background-color: {color}; padding: 0.2em 0.3em; '
|
66 |
+
f'border-radius: 0.35em; margin: 0 0.1em; font-weight: bold; color: #000;">'
|
67 |
+
f'{doc.text[ent.start_char:ent.end_char]}'
|
68 |
+
f'<span style="font-size: 0.8em; font-weight: bold; margin-left: 0.5em">{ent.label_}</span>'
|
69 |
+
f'</span>'
|
70 |
+
)
|
71 |
+
|
72 |
+
# Update the last index
|
73 |
+
last_idx = ent.end_char
|
74 |
+
|
75 |
+
# Add any remaining text
|
76 |
+
html_parts.append(doc.text[last_idx:])
|
77 |
+
|
78 |
+
# Wrap the result in a div with dark theme styling
|
79 |
+
return f'<div style="line-height: 1.5; padding: 10px; background: #222; color: #fff; border-radius: 5px;">{"".join(html_parts)}</div>'
|
80 |
+
|
81 |
+
# Function to get entity details including spans
|
82 |
+
def get_entity_details(doc) -> List[Dict[str, Any]]:
|
83 |
+
entity_details = []
|
84 |
+
for ent in doc.ents:
|
85 |
+
entity_details.append({
|
86 |
+
"text": ent.text,
|
87 |
+
"type": ent.label_,
|
88 |
+
"start": ent.start_char,
|
89 |
+
"end": ent.end_char
|
90 |
+
})
|
91 |
+
return entity_details
|
92 |
+
|
93 |
+
# Main processing function
|
94 |
+
def process_text(text: str, entities_json: str) -> Tuple[str, List[Dict[str, Any]]]:
|
95 |
+
global nlp
|
96 |
+
|
97 |
+
# Update model if entities have changed
|
98 |
+
try:
|
99 |
+
entities = json.loads(entities_json)
|
100 |
+
nlp = load_model(entities)
|
101 |
+
except json.JSONDecodeError:
|
102 |
+
return "Error: Invalid JSON in entity configuration", []
|
103 |
+
|
104 |
+
# Process the text with the NER model
|
105 |
+
doc = nlp(text)
|
106 |
+
|
107 |
+
# Generate visualization HTML
|
108 |
+
html_output = get_entity_html(doc)
|
109 |
+
|
110 |
+
# Get detailed entity information including spans
|
111 |
+
entity_details = get_entity_details(doc)
|
112 |
+
|
113 |
+
return html_output, entity_details
|
114 |
+
|
115 |
+
# Set theme to dark
|
116 |
+
theme = gr.themes.Soft(
|
117 |
+
primary_hue="blue",
|
118 |
+
secondary_hue="slate",
|
119 |
+
neutral_hue="slate",
|
120 |
+
text_size=gr.themes.sizes.text_md,
|
121 |
+
).set(
|
122 |
+
body_background_fill="#1a1a1a",
|
123 |
+
background_fill_primary="#222",
|
124 |
+
background_fill_secondary="#333",
|
125 |
+
border_color_primary="#444",
|
126 |
+
block_background_fill="#222",
|
127 |
+
block_label_background_fill="#333",
|
128 |
+
block_label_text_color="#fff",
|
129 |
+
block_title_text_color="#fff",
|
130 |
+
body_text_color="#fff",
|
131 |
+
button_primary_background_fill="#2563eb",
|
132 |
+
button_primary_text_color="#fff",
|
133 |
+
input_background_fill="#333",
|
134 |
+
input_border_color="#555",
|
135 |
+
input_placeholder_color="#888",
|
136 |
+
panel_background_fill="#222",
|
137 |
+
slider_color="#2563eb",
|
138 |
+
)
|
139 |
+
|
140 |
+
# Create Gradio interface with dark theme
|
141 |
+
with gr.Blocks(title="Named Entity Recognition", theme=theme) as demo:
|
142 |
+
gr.Markdown("# OpenBioNER - Demo")
|
143 |
+
|
144 |
+
# First row: Entity Definitions
|
145 |
+
with gr.Row():
|
146 |
+
entities_input = gr.Code(
|
147 |
+
label="Entity Definitions (JSON)",
|
148 |
+
language="json",
|
149 |
+
value=json.dumps(default_entities, indent=2),
|
150 |
+
lines=6
|
151 |
+
)
|
152 |
+
|
153 |
+
# Second row: Input text and examples side by side
|
154 |
+
with gr.Row():
|
155 |
+
# Left side - Input text
|
156 |
+
with gr.Column():
|
157 |
+
text_input = gr.Textbox(
|
158 |
+
label="Text to analyze",
|
159 |
+
placeholder="Enter text to analyze...",
|
160 |
+
value="Impact of cofactor - binding loop mutations on thermotolerance and activity of E. coli transketolase",
|
161 |
+
lines=3
|
162 |
+
)
|
163 |
+
|
164 |
+
analyze_btn = gr.Button("Analyze Text", variant="primary")
|
165 |
+
|
166 |
+
# Right side - Example texts
|
167 |
+
with gr.Column():
|
168 |
+
gr.Markdown("### Quick Examples")
|
169 |
+
example1_btn = gr.Button("E. coli research")
|
170 |
+
example2_btn = gr.Button("Bacterial infection case")
|
171 |
+
example3_btn = gr.Button("Multiple bacterial species")
|
172 |
+
|
173 |
+
# Third row: Output visualization and spans side by side
|
174 |
+
with gr.Row():
|
175 |
+
# Left side - Highlighted text output
|
176 |
+
with gr.Column():
|
177 |
+
gr.Markdown("### Recognized Entities")
|
178 |
+
result_html = gr.HTML()
|
179 |
+
|
180 |
+
# Right side - Entity spans details
|
181 |
+
with gr.Column():
|
182 |
+
gr.Markdown("### Entity Details with Spans")
|
183 |
+
entity_details = gr.JSON()
|
184 |
+
|
185 |
+
# Set up event handlers for the analyze button
|
186 |
+
analyze_btn.click(
|
187 |
+
fn=process_text,
|
188 |
+
inputs=[text_input, entities_input],
|
189 |
+
outputs=[result_html, entity_details]
|
190 |
+
)
|
191 |
+
|
192 |
+
# Set up event handlers for example buttons
|
193 |
+
example1_btn.click(
|
194 |
+
fn=lambda: "Impact of cofactor - binding loop mutations on thermotolerance and activity of E. coli transketolase",
|
195 |
+
inputs=None,
|
196 |
+
outputs=text_input
|
197 |
+
)
|
198 |
+
|
199 |
+
example2_btn.click(
|
200 |
+
fn=lambda: "The patient was diagnosed with pneumonia caused by Streptococcus pneumoniae and treated with antibiotics for 7 days.",
|
201 |
+
inputs=None,
|
202 |
+
outputs=text_input
|
203 |
+
)
|
204 |
+
|
205 |
+
example3_btn.click(
|
206 |
+
fn=lambda: "We compared growth rates of E. coli, B. subtilis and S. aureus in various media containing different carbon sources.",
|
207 |
+
inputs=None,
|
208 |
+
outputs=text_input
|
209 |
+
)
|
210 |
+
|
211 |
+
if __name__ == "__main__":
|
212 |
+
demo.launch()
|