Spaces:
Running
Running
Upload collect_env.py
Browse files- utils/collect_env.py +46 -46
utils/collect_env.py
CHANGED
|
@@ -13,7 +13,7 @@ import torch
|
|
| 13 |
def is_rocm_pytorch() -> bool:
|
| 14 |
"""Check whether the PyTorch is compiled on ROCm."""
|
| 15 |
is_rocm = False
|
| 16 |
-
if TORCH_VERSION !=
|
| 17 |
try:
|
| 18 |
from torch.utils.cpp_extension import ROCM_HOME
|
| 19 |
is_rocm = True if ((torch.version.hip is not None) and
|
|
@@ -26,7 +26,7 @@ TORCH_VERSION = torch.__version__
|
|
| 26 |
|
| 27 |
def get_build_config():
|
| 28 |
"""Obtain the build information of PyTorch or Parrots."""
|
| 29 |
-
if TORCH_VERSION ==
|
| 30 |
from parrots.config import get_build_info
|
| 31 |
return get_build_info()
|
| 32 |
else:
|
|
@@ -46,7 +46,7 @@ def is_cuda_available() -> bool:
|
|
| 46 |
return torch.cuda.is_available()
|
| 47 |
|
| 48 |
def _get_cuda_home():
|
| 49 |
-
if TORCH_VERSION ==
|
| 50 |
from parrots.utils.build_extension import CUDA_HOME
|
| 51 |
else:
|
| 52 |
if is_rocm_pytorch():
|
|
@@ -58,7 +58,7 @@ def _get_cuda_home():
|
|
| 58 |
|
| 59 |
|
| 60 |
def _get_musa_home():
|
| 61 |
-
return os.environ.get(
|
| 62 |
|
| 63 |
|
| 64 |
def collect_env():
|
|
@@ -84,77 +84,77 @@ def collect_env():
|
|
| 84 |
from distutils import errors
|
| 85 |
|
| 86 |
env_info = OrderedDict()
|
| 87 |
-
env_info[
|
| 88 |
-
env_info[
|
| 89 |
|
| 90 |
cuda_available = is_cuda_available()
|
| 91 |
musa_available = is_musa_available()
|
| 92 |
-
env_info[
|
| 93 |
-
env_info[
|
| 94 |
-
env_info[
|
| 95 |
|
| 96 |
if cuda_available:
|
| 97 |
devices = defaultdict(list)
|
| 98 |
for k in range(torch.cuda.device_count()):
|
| 99 |
devices[torch.cuda.get_device_name(k)].append(str(k))
|
| 100 |
for name, device_ids in devices.items():
|
| 101 |
-
env_info[
|
| 102 |
|
| 103 |
CUDA_HOME = _get_cuda_home()
|
| 104 |
-
env_info[
|
| 105 |
|
| 106 |
if CUDA_HOME is not None and osp.isdir(CUDA_HOME):
|
| 107 |
-
if CUDA_HOME ==
|
| 108 |
try:
|
| 109 |
-
nvcc = osp.join(CUDA_HOME,
|
| 110 |
nvcc = subprocess.check_output(
|
| 111 |
-
f"
|
| 112 |
-
nvcc = nvcc.decode(
|
| 113 |
-
release = nvcc.rfind(
|
| 114 |
-
build = nvcc.rfind(
|
| 115 |
nvcc = nvcc[release:build].strip()
|
| 116 |
except subprocess.SubprocessError:
|
| 117 |
-
nvcc =
|
| 118 |
else:
|
| 119 |
try:
|
| 120 |
-
nvcc = osp.join(CUDA_HOME,
|
| 121 |
-
nvcc = subprocess.check_output(f"
|
| 122 |
-
nvcc = nvcc.decode(
|
| 123 |
-
release = nvcc.rfind(
|
| 124 |
-
build = nvcc.rfind(
|
| 125 |
nvcc = nvcc[release:build].strip()
|
| 126 |
except subprocess.SubprocessError:
|
| 127 |
-
nvcc =
|
| 128 |
-
env_info[
|
| 129 |
elif musa_available:
|
| 130 |
devices = defaultdict(list)
|
| 131 |
for k in range(torch.musa.device_count()):
|
| 132 |
devices[torch.musa.get_device_name(k)].append(str(k))
|
| 133 |
for name, device_ids in devices.items():
|
| 134 |
-
env_info[
|
| 135 |
|
| 136 |
MUSA_HOME = _get_musa_home()
|
| 137 |
-
env_info[
|
| 138 |
|
| 139 |
if MUSA_HOME is not None and osp.isdir(MUSA_HOME):
|
| 140 |
try:
|
| 141 |
-
mcc = osp.join(MUSA_HOME,
|
| 142 |
-
subprocess.check_output(f"
|
| 143 |
except subprocess.SubprocessError:
|
| 144 |
-
mcc =
|
| 145 |
-
env_info[
|
| 146 |
try:
|
| 147 |
# Check C++ Compiler.
|
| 148 |
# For Unix-like, sysconfig has 'CC' variable like 'gcc -pthread ...',
|
| 149 |
# indicating the compiler used, we use this to get the compiler name
|
| 150 |
import io
|
| 151 |
import sysconfig
|
| 152 |
-
cc = sysconfig.get_config_var(
|
| 153 |
if cc:
|
| 154 |
cc = osp.basename(cc.split()[0])
|
| 155 |
-
cc_info = subprocess.check_output(f
|
| 156 |
-
env_info[
|
| 157 |
-
|
| 158 |
else:
|
| 159 |
# on Windows, cl.exe is not in PATH. We need to find the path.
|
| 160 |
# distutils.ccompiler.new_compiler() returns a msvccompiler
|
|
@@ -165,38 +165,38 @@ def collect_env():
|
|
| 165 |
ccompiler = new_compiler()
|
| 166 |
ccompiler.initialize()
|
| 167 |
cc = subprocess.check_output(
|
| 168 |
-
f
|
| 169 |
encoding = os.device_encoding(
|
| 170 |
sys.stdout.fileno()) or locale.getpreferredencoding()
|
| 171 |
-
env_info[
|
| 172 |
-
env_info[
|
| 173 |
except (subprocess.CalledProcessError, errors.DistutilsPlatformError):
|
| 174 |
-
env_info[
|
| 175 |
except io.UnsupportedOperation as e:
|
| 176 |
# JupyterLab on Windows changes sys.stdout, which has no `fileno` attr
|
| 177 |
# Refer to: https://github.com/open-mmlab/mmengine/issues/931
|
| 178 |
# TODO: find a solution to get compiler info in Windows JupyterLab,
|
| 179 |
# while preserving backward-compatibility in other systems.
|
| 180 |
-
env_info[
|
| 181 |
|
| 182 |
-
env_info[
|
| 183 |
-
env_info[
|
| 184 |
|
| 185 |
try:
|
| 186 |
import torchvision
|
| 187 |
-
env_info[
|
| 188 |
except ModuleNotFoundError:
|
| 189 |
pass
|
| 190 |
|
| 191 |
try:
|
| 192 |
import cv2
|
| 193 |
-
env_info[
|
| 194 |
except ImportError:
|
| 195 |
pass
|
| 196 |
|
| 197 |
|
| 198 |
return env_info
|
| 199 |
|
| 200 |
-
if __name__ ==
|
| 201 |
for name, val in collect_env().items():
|
| 202 |
-
print(f
|
|
|
|
| 13 |
def is_rocm_pytorch() -> bool:
|
| 14 |
"""Check whether the PyTorch is compiled on ROCm."""
|
| 15 |
is_rocm = False
|
| 16 |
+
if TORCH_VERSION != 'parrots':
|
| 17 |
try:
|
| 18 |
from torch.utils.cpp_extension import ROCM_HOME
|
| 19 |
is_rocm = True if ((torch.version.hip is not None) and
|
|
|
|
| 26 |
|
| 27 |
def get_build_config():
|
| 28 |
"""Obtain the build information of PyTorch or Parrots."""
|
| 29 |
+
if TORCH_VERSION == 'parrots':
|
| 30 |
from parrots.config import get_build_info
|
| 31 |
return get_build_info()
|
| 32 |
else:
|
|
|
|
| 46 |
return torch.cuda.is_available()
|
| 47 |
|
| 48 |
def _get_cuda_home():
|
| 49 |
+
if TORCH_VERSION == 'parrots':
|
| 50 |
from parrots.utils.build_extension import CUDA_HOME
|
| 51 |
else:
|
| 52 |
if is_rocm_pytorch():
|
|
|
|
| 58 |
|
| 59 |
|
| 60 |
def _get_musa_home():
|
| 61 |
+
return os.environ.get('MUSA_HOME')
|
| 62 |
|
| 63 |
|
| 64 |
def collect_env():
|
|
|
|
| 84 |
from distutils import errors
|
| 85 |
|
| 86 |
env_info = OrderedDict()
|
| 87 |
+
env_info['sys.platform'] = sys.platform
|
| 88 |
+
env_info['Python'] = sys.version.replace('\n', '')
|
| 89 |
|
| 90 |
cuda_available = is_cuda_available()
|
| 91 |
musa_available = is_musa_available()
|
| 92 |
+
env_info['CUDA available'] = cuda_available
|
| 93 |
+
env_info['MUSA available'] = musa_available
|
| 94 |
+
env_info['numpy_random_seed'] = np.random.get_state()[1][0]
|
| 95 |
|
| 96 |
if cuda_available:
|
| 97 |
devices = defaultdict(list)
|
| 98 |
for k in range(torch.cuda.device_count()):
|
| 99 |
devices[torch.cuda.get_device_name(k)].append(str(k))
|
| 100 |
for name, device_ids in devices.items():
|
| 101 |
+
env_info['GPU ' + ','.join(device_ids)] = name
|
| 102 |
|
| 103 |
CUDA_HOME = _get_cuda_home()
|
| 104 |
+
env_info['CUDA_HOME'] = CUDA_HOME
|
| 105 |
|
| 106 |
if CUDA_HOME is not None and osp.isdir(CUDA_HOME):
|
| 107 |
+
if CUDA_HOME == '/opt/rocm':
|
| 108 |
try:
|
| 109 |
+
nvcc = osp.join(CUDA_HOME, 'hip/bin/hipcc')
|
| 110 |
nvcc = subprocess.check_output(
|
| 111 |
+
f'"{nvcc}" --version', shell=True)
|
| 112 |
+
nvcc = nvcc.decode('utf-8').strip()
|
| 113 |
+
release = nvcc.rfind('HIP version:')
|
| 114 |
+
build = nvcc.rfind('')
|
| 115 |
nvcc = nvcc[release:build].strip()
|
| 116 |
except subprocess.SubprocessError:
|
| 117 |
+
nvcc = 'Not Available'
|
| 118 |
else:
|
| 119 |
try:
|
| 120 |
+
nvcc = osp.join(CUDA_HOME, 'bin/nvcc')
|
| 121 |
+
nvcc = subprocess.check_output(f'"{nvcc}" -V', shell=True)
|
| 122 |
+
nvcc = nvcc.decode('utf-8').strip()
|
| 123 |
+
release = nvcc.rfind('Cuda compilation tools')
|
| 124 |
+
build = nvcc.rfind('Build ')
|
| 125 |
nvcc = nvcc[release:build].strip()
|
| 126 |
except subprocess.SubprocessError:
|
| 127 |
+
nvcc = 'Not Available'
|
| 128 |
+
env_info['NVCC'] = nvcc
|
| 129 |
elif musa_available:
|
| 130 |
devices = defaultdict(list)
|
| 131 |
for k in range(torch.musa.device_count()):
|
| 132 |
devices[torch.musa.get_device_name(k)].append(str(k))
|
| 133 |
for name, device_ids in devices.items():
|
| 134 |
+
env_info['GPU ' + ','.join(device_ids)] = name
|
| 135 |
|
| 136 |
MUSA_HOME = _get_musa_home()
|
| 137 |
+
env_info['MUSA_HOME'] = MUSA_HOME
|
| 138 |
|
| 139 |
if MUSA_HOME is not None and osp.isdir(MUSA_HOME):
|
| 140 |
try:
|
| 141 |
+
mcc = osp.join(MUSA_HOME, 'bin/mcc')
|
| 142 |
+
subprocess.check_output(f'"{mcc}" -v', shell=True)
|
| 143 |
except subprocess.SubprocessError:
|
| 144 |
+
mcc = 'Not Available'
|
| 145 |
+
env_info['mcc'] = mcc
|
| 146 |
try:
|
| 147 |
# Check C++ Compiler.
|
| 148 |
# For Unix-like, sysconfig has 'CC' variable like 'gcc -pthread ...',
|
| 149 |
# indicating the compiler used, we use this to get the compiler name
|
| 150 |
import io
|
| 151 |
import sysconfig
|
| 152 |
+
cc = sysconfig.get_config_var('CC')
|
| 153 |
if cc:
|
| 154 |
cc = osp.basename(cc.split()[0])
|
| 155 |
+
cc_info = subprocess.check_output(f'{cc} --version', shell=True)
|
| 156 |
+
env_info['GCC'] = cc_info.decode('utf-8').partition(
|
| 157 |
+
'\n')[0].strip()
|
| 158 |
else:
|
| 159 |
# on Windows, cl.exe is not in PATH. We need to find the path.
|
| 160 |
# distutils.ccompiler.new_compiler() returns a msvccompiler
|
|
|
|
| 165 |
ccompiler = new_compiler()
|
| 166 |
ccompiler.initialize()
|
| 167 |
cc = subprocess.check_output(
|
| 168 |
+
f'{ccompiler.cc}', stderr=subprocess.STDOUT, shell=True)
|
| 169 |
encoding = os.device_encoding(
|
| 170 |
sys.stdout.fileno()) or locale.getpreferredencoding()
|
| 171 |
+
env_info['MSVC'] = cc.decode(encoding).partition('\n')[0].strip()
|
| 172 |
+
env_info['GCC'] = 'n/a'
|
| 173 |
except (subprocess.CalledProcessError, errors.DistutilsPlatformError):
|
| 174 |
+
env_info['GCC'] = 'n/a'
|
| 175 |
except io.UnsupportedOperation as e:
|
| 176 |
# JupyterLab on Windows changes sys.stdout, which has no `fileno` attr
|
| 177 |
# Refer to: https://github.com/open-mmlab/mmengine/issues/931
|
| 178 |
# TODO: find a solution to get compiler info in Windows JupyterLab,
|
| 179 |
# while preserving backward-compatibility in other systems.
|
| 180 |
+
env_info['MSVC'] = f'n/a, reason: {str(e)}'
|
| 181 |
|
| 182 |
+
env_info['PyTorch'] = torch.__version__
|
| 183 |
+
env_info['PyTorch compiling details'] = get_build_config()
|
| 184 |
|
| 185 |
try:
|
| 186 |
import torchvision
|
| 187 |
+
env_info['TorchVision'] = torchvision.__version__
|
| 188 |
except ModuleNotFoundError:
|
| 189 |
pass
|
| 190 |
|
| 191 |
try:
|
| 192 |
import cv2
|
| 193 |
+
env_info['OpenCV'] = cv2.__version__
|
| 194 |
except ImportError:
|
| 195 |
pass
|
| 196 |
|
| 197 |
|
| 198 |
return env_info
|
| 199 |
|
| 200 |
+
if __name__ == '__main__':
|
| 201 |
for name, val in collect_env().items():
|
| 202 |
+
print(f'{name}: {val}')
|