File size: 11,334 Bytes
fa9c04b
 
 
 
 
0822336
a6e9bd9
fa9c04b
f3f6f6f
 
fa9c04b
 
 
 
0822336
a6e9bd9
fa9c04b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0822336
 
 
 
 
f3f6f6f
a6e9bd9
 
 
0822336
f3f6f6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6e9bd9
 
f3f6f6f
 
a6e9bd9
 
f3f6f6f
 
 
a6e9bd9
f3f6f6f
 
 
 
 
 
 
 
 
 
 
 
 
fa9c04b
 
0822336
 
f3f6f6f
fa9c04b
 
 
 
 
 
 
 
 
 
 
 
 
0822336
 
fa9c04b
0822336
fa9c04b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6e9bd9
 
 
 
 
fa9c04b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0da590c
fa9c04b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0822336
a6e9bd9
fa9c04b
 
 
 
 
 
 
 
 
0ee7983
 
 
 
 
 
 
fa9c04b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import gradio as gr
import pandas as pd
import joblib
import os
import spotipy
import pylast
import discogs_client
from spotipy.oauth2 import SpotifyClientCredentials
from queue import PriorityQueue
from fuzzywuzzy import fuzz

final_model = joblib.load('final_model.pkl')
# Set up authentication with the Spotify API
sp = spotipy.Spotify(auth_manager=SpotifyClientCredentials(client_id=os.environ['SPOT_API'], client_secret=os.environ['SPOT_SECRET']))
network = pylast.LastFMNetwork(api_key=os.environ['LAST_API'], api_secret=os.environ['LAST_SECRET'])
d = discogs_client.Client('app/0.1', user_token=os.environ['DIS_TOKEN'])
genre_list = ['acoustic', 'afrobeat', 'alt-rock', 'alternative', 'ambient',
       'anime', 'black-metal', 'bluegrass', 'blues', 'brazil',
       'breakbeat', 'british', 'cantopop', 'chicago-house', 'children',
       'chill', 'classical', 'club', 'comedy', 'country', 'dance',
       'dancehall', 'death-metal', 'deep-house', 'detroit-techno',
       'disco', 'disney', 'drum-and-bass', 'dub', 'dubstep', 'edm',
       'electro', 'electronic', 'emo', 'folk', 'forro', 'french', 'funk',
       'garage', 'german', 'gospel', 'goth', 'grindcore', 'groove',
       'grunge', 'guitar', 'happy', 'hard-rock', 'hardcore', 'hardstyle',
       'heavy-metal', 'hip-hop', 'honky-tonk', 'house', 'idm', 'indian',
       'indie-pop', 'indie', 'industrial', 'iranian', 'j-dance', 'j-idol',
       'j-pop', 'j-rock', 'jazz', 'k-pop', 'kids', 'latin', 'latino',
       'malay', 'mandopop', 'metal', 'metalcore', 'minimal-techno', 'mpb',
       'new-age', 'opera', 'pagode', 'party', 'piano', 'pop-film', 'pop',
       'power-pop', 'progressive-house', 'psych-rock', 'punk-rock',
       'punk', 'r-n-b', 'reggae', 'reggaeton', 'rock-n-roll', 'rock',
       'rockabilly', 'romance', 'sad', 'salsa', 'samba', 'sertanejo',
       'show-tunes', 'singer-songwriter', 'ska', 'sleep', 'soul',
       'spanish', 'study', 'swedish', 'synth-pop', 'tango', 'techno',
       'trance', 'trip-hop', 'turkish', 'world-music']





def get_track_genre(track_id,artist_name,track_name):
    genres = {}
    track_spot = sp.track(track_id)
    artist = sp.artist(track_spot['artists'][0]['external_urls']['spotify'])
    album_id = track_spot['album']['id']
    album = sp.album(album_id)
    genres.update({genre: 100 for genre in album['genres']})
    genres.update({genre: 100 for genre in artist['genres']})

    try:
        if network.get_track(artist_name, track_name):
            track_last = network.get_track(artist_name, track_name)
            top_tags = track_last.get_top_tags(limit=5)
            tags_list = {tag.item.get_name(): int(tag.weight) for tag in top_tags}
            genres.update(tags_list)
    except pylast.WSError as e:
        if str(e) == "Track not found":
            # Handle the error here
            pass

    results = d.search(track_name, artist=artist_name, type='release')
    if results:
        release = results[0]
        if release.genres:
            genres.update({genre: 50 for genre in release.genres})
        if release.styles:
            genres.update({genre: 50 for genre in release.styles})


    print(genres)
    return genres


def similar(genre1, genre2):
    score = fuzz.token_set_ratio(genre1, genre2)
    return genre1 if score >85 else None

def find_genre(genres, scraped_genres):
    pq = PriorityQueue()
    for genre, weight in scraped_genres.items():
        pq.put((-weight, genre))
    while not pq.empty():
        weight, genre = pq.get()
        if genre in genres:
            return genre
        else:
            for g in genres:
                if similar(g, genre):
                    return g
    return None


def match_genres_to_list(track_id,artist_name,track_name):
    track_genres=get_track_genre(track_id,artist_name,track_name)
    return find_genre(genre_list,track_genres)

def search_songs(query):
    results = sp.search(q=query, type="track")
    songs = [f"{index}. {item['name']} by {item['artists'][0]['name']}" for index, item in enumerate(results["tracks"]["items"])]

    track_ids = [item["id"] for item in results["tracks"]["items"]]
    return songs, track_ids


def get_song_features(song, track_ids):
    index = int(song.split(".")[0])
    track_id = track_ids[index]
    track_info = sp.track(track_id)
    artist_name = track_info['artists'][0]['name']
    track_name = track_info['name']
    features = sp.audio_features([track_id])[0]
    genre = match_genres_to_list(track_id,artist_name,track_name)
    key_map = {0: 'C', 1: 'C#', 2: 'D', 3: 'D#', 4: 'E', 5: 'F', 6: 'F#', 7: 'G', 8: 'G#', 9: 'A', 10: 'A#', 11: 'B'}
    key = str(key_map[features['key']])
    mode_map = { 1: "Major", 0: "Minor"}
    mode = mode_map[features['mode']]
    
    explicit_real = track_info['explicit']
    features_list = [
        features['duration_ms'],
        explicit_real,
        features['danceability'],
        features['energy'],
        key,
        features['loudness'],
        mode,
        features['speechiness'],
        features['acousticness'],
        features['instrumentalness'],
        features['liveness'],
        features['valence'],
        features['tempo'],
        str(features['time_signature']),
        genre
    ]
    
    return features_list

theme = gr.themes.Monochrome(
    # text_size="text_lg",
    font=[gr.themes.GoogleFont('Neucha'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
)
with gr.Blocks(theme=theme,css = "@media (max-width: 600px) {" +
        ".gradio-container { flex-direction: column;}" +
        ".gradio-container h1 {font-size: 30px !important ;margin-left: 20px !important; line-height: 30px !important}" +
        ".gradio-container h2 {font-size: 15px !important;margin-left: 20px !important;margin-top: 20px !important;}"+
        ".gradio-container img{width : 100px; height : 100px}}") as demo:
    with gr.Row():
        image = gr.HTML("<div style='display: flex; align-items: center;'><img src='file=images/cat-jam.gif' alt='My gif' width='200' height='200'>" +
                        "<div><h1 style='font-size: 60px; line-height: 24px; margin-left: 50px;'>Music Popularity Prediction</h1>" +
                        "<h2 style='font-size: 24px; line-height: 18px; margin-left: 50px; margin-top: 50px'>by Keh Zheng Xian</h2></div></div>")

    with gr.Row():
        with gr.Column():
            search_box = gr.Textbox(label="Search for songs")
            song_dropdown = gr.Dropdown(label="Select a song", choices=[])
            # features_box = gr.Textbox(label="Song features", interactive=False)
            inputs = [
                gr.Number(label="duration_ms",interactive=True),
                gr.Checkbox(label="explicit",interactive=True),
                gr.Slider(0.0, 1.0, label="danceability",interactive=True),
                gr.Slider(0.0, 1.0, label="energy",interactive=True),
                gr.Dropdown(label="key", choices=["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"],interactive=True),
                gr.Number(label="loudness",interactive=True),
                gr.Radio(label="mode", choices=["Major", "Minor"],interactive=True),
                gr.Slider(0.0, 1.0, label="speechiness",interactive=True),
                gr.Slider(0.0, 1.0, label="acousticness",interactive=True),
                gr.Slider(0.0, 1.0, label="instrumentalness",interactive=True),
                gr.Slider(0.0, 1.0, label="liveness",interactive=True),
                gr.Slider(0.0, 1.0, label="valence",interactive=True),
                gr.Number(label="tempo",interactive=True),
                gr.Dropdown(label="time_signature", choices=[3, 4, 5, 6, 7],interactive=True),
                gr.Dropdown(label="track_genre", choices=genre_list,interactive=True)
            ]
            predict_button = gr.Button(label="Predict popularity")

        with gr.Column():
            popularity_box = gr.HTML("<div style='display: flex; align-items: center;'><img src='file=images/pepe-waiting.gif' alt='My gif 2' width='200' height='200'>" +
                        "<div><h1 style='font-size: 30px; line-height: 24px; margin-left: 50px;'>Waiting for your song...</h1></div>",elem_id="output")
    track_ids_var = gr.State()
    def update_dropdown(query,track_ids):
        songs, track_ids = search_songs(query)
        return {song_dropdown: gr.update(choices=songs), track_ids_var: track_ids}

    search_box.change(fn=update_dropdown, inputs=[search_box,track_ids_var], outputs=[song_dropdown,track_ids_var])

    def update_features(song,track_ids):
        features = get_song_features(song, track_ids)
        return features

    def predict_popularity(duration_ms, explicit, danceability, energy, key, loudness, mode, speechiness, acousticness, instrumentalness, liveness, valence, tempo, time_signature,track_genre):
        # Convert the key input from a string to an integer value
        key_map = {"C": 0, "C#": 1, "D": 2, "D#": 3, "E": 4, "F": 5, "F#": 6, "G": 7, "G#": 8, "A": 9, "A#": 10, "B": 11}
        key_real = str(key_map[key])
        
        explicit_real = int(explicit)
        # Convert the mode input from a string to an integer value
        mode_map = {"Major": 1, "Minor": 0}
        mode_real = mode_map[mode]

        data = {
            "duration_ms": [duration_ms],
            "explicit": [explicit_real],
            "danceability": [danceability],
            "energy": [energy],
            "key": [key_real],
            "loudness": [loudness],
            "mode": [mode_real],
            "speechiness": [speechiness],
            "acousticness": [acousticness],
            "instrumentalness": [instrumentalness],
            "liveness": [liveness],
            "valence": [valence],
            "tempo": [tempo],
            "time_signature": [str(time_signature)],
            "track_genre": [track_genre]
        }

        df = pd.DataFrame(data)
        print(df)
        print(final_model.predict(df))
        # Use your trained model to predict popularity based on the input features
        if(final_model.predict(df)[0] == 1):
            return ("<div style='display: flex; align-items: center;'><img src='file=images/pepe-jam.gif' alt='My gif 3' width='200' height='200'>" +
                        "<div><h1 style='font-size: 30px; line-height: 24px; margin-left: 50px;'>Your song issa boppp</h1></div>")
        else:
            return ("<div style='display: flex; align-items: center;'><img src='file=images/pepo-sad-pepe.gif' alt='My gif 4' width='200' height='200'>" +
                        "<div><h1 style='font-size: 30px; line-height: 24px; margin-left: 50px;'>Not a bop....</h1></div>")

    song_dropdown.change(fn=update_features, inputs=[song_dropdown,track_ids_var], outputs=inputs)
    predict_button.click(fn=predict_popularity, inputs=inputs, outputs=popularity_box, scroll_to_output=True,
                         _js="const element = document.querySelector('output');"+
                             "const rect = element.getBoundingClientRect();"+
                             "const options = {left: rect.left, top: rect.top, behavior: 'smooth'}"+
                             "parentIFrame' in window ?"
                             "window.parentIFrame.scrollTo(options):"+
                             "window.scrollTo(options)")

    demo.launch()