Spaces:
Runtime error
Runtime error
Use canny
Browse files
app.py
CHANGED
|
@@ -1,11 +1,17 @@
|
|
| 1 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 2 |
from diffusers import UniPCMultistepScheduler
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
import torch
|
| 5 |
import base64
|
|
|
|
| 6 |
from io import BytesIO
|
| 7 |
from PIL import Image, ImageFilter
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
canvas_html = '<pose-maker/>'
|
| 10 |
load_js = """
|
| 11 |
async () => {
|
|
@@ -31,7 +37,7 @@ async (canvas, prompt) => {
|
|
| 31 |
|
| 32 |
# Models
|
| 33 |
controlnet = ControlNetModel.from_pretrained(
|
| 34 |
-
"lllyasviel/sd-controlnet-
|
| 35 |
)
|
| 36 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 37 |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
|
|
@@ -48,6 +54,15 @@ pipe.enable_xformers_memory_efficient_attention()
|
|
| 48 |
# Generator seed,
|
| 49 |
generator = torch.manual_seed(0)
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
def generate_images(canvas, prompt):
|
| 53 |
try:
|
|
@@ -56,6 +71,7 @@ def generate_images(canvas, prompt):
|
|
| 56 |
input_img = Image.open(BytesIO(image_data)).convert(
|
| 57 |
'RGB').resize((512, 512))
|
| 58 |
input_img = input_img.filter(ImageFilter.GaussianBlur(radius=5))
|
|
|
|
| 59 |
output = pipe(
|
| 60 |
prompt,
|
| 61 |
input_img,
|
|
|
|
| 1 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 2 |
from diffusers import UniPCMultistepScheduler
|
| 3 |
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
import torch
|
| 6 |
import base64
|
| 7 |
+
import cv2
|
| 8 |
from io import BytesIO
|
| 9 |
from PIL import Image, ImageFilter
|
| 10 |
|
| 11 |
+
# Constants
|
| 12 |
+
low_threshold = 100
|
| 13 |
+
high_threshold = 200
|
| 14 |
+
|
| 15 |
canvas_html = '<pose-maker/>'
|
| 16 |
load_js = """
|
| 17 |
async () => {
|
|
|
|
| 37 |
|
| 38 |
# Models
|
| 39 |
controlnet = ControlNetModel.from_pretrained(
|
| 40 |
+
"lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16
|
| 41 |
)
|
| 42 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 43 |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
|
|
|
|
| 54 |
# Generator seed,
|
| 55 |
generator = torch.manual_seed(0)
|
| 56 |
|
| 57 |
+
def get_canny_filter(image):
|
| 58 |
+
if not isinstance(image, np.ndarray):
|
| 59 |
+
image = np.array(image)
|
| 60 |
+
|
| 61 |
+
image = cv2.Canny(image, low_threshold, high_threshold)
|
| 62 |
+
image = image[:, :, None]
|
| 63 |
+
image = np.concatenate([image, image, image], axis=2)
|
| 64 |
+
canny_image = Image.fromarray(image)
|
| 65 |
+
return canny_image
|
| 66 |
|
| 67 |
def generate_images(canvas, prompt):
|
| 68 |
try:
|
|
|
|
| 71 |
input_img = Image.open(BytesIO(image_data)).convert(
|
| 72 |
'RGB').resize((512, 512))
|
| 73 |
input_img = input_img.filter(ImageFilter.GaussianBlur(radius=5))
|
| 74 |
+
input_img = get_canny_filter(input_img)
|
| 75 |
output = pipe(
|
| 76 |
prompt,
|
| 77 |
input_img,
|