Spaces:
Runtime error
Runtime error
File size: 25,107 Bytes
dd09c30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
import os
import uuid
import cv2
import gradio as gr
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from torchvision import transforms
from diffusers import FluxFillPipeline, FluxTransformer2DModel
from diffusers.utils import check_min_version, load_image
WEIGHT_PATH = "dielz/textfux-test/transformer"
# scheduler = "overshoot" # overshoot or default
scheduler = "default"
def read_words_from_text(input_text):
"""
Reads words/list of words:
- If input_text is a file path, it reads all non-empty lines from the file.
- Otherwise, it directly splits the input by newlines into a list.
"""
if isinstance(input_text, str) and os.path.exists(input_text):
with open(input_text, 'r', encoding='utf-8') as f:
words = [line.strip() for line in f if line.strip()]
else:
words = [line.strip() for line in input_text.splitlines() if line.strip()]
return words
def generate_prompt(words):
words_str = ', '.join(f"'{word}'" for word in words)
prompt_template = (
"The pair of images highlights some white words on a black background, as well as their style on a real-world scene image. "
"[IMAGE1] is a template image rendering the text, with the words {words}; "
"[IMAGE2] shows the text content {words} naturally and correspondingly integrated into the image."
)
return prompt_template.format(words=words_str)
prompt_template2 = (
"The pair of images highlights some white words on a black background, as well as their style on a real-world scene image. "
"[IMAGE1] is a template image rendering the text, with the words; "
"[IMAGE2] shows the text content naturally and correspondingly integrated into the image."
)
PIPE = None
def load_flux_pipeline():
global PIPE
if PIPE is None:
transformer = FluxTransformer2DModel.from_pretrained(
WEIGHT_PATH,
torch_dtype=torch.bfloat16
)
PIPE = FluxFillPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Fill-dev",
transformer=transformer,
torch_dtype=torch.bfloat16
).to("cuda")
PIPE.transformer.to(torch.bfloat16)
return PIPE
def run_inference(image_input, mask_input, words_input, num_steps=50, guidance_scale=30, seed=42):
"""
Invokes the Flux model pipeline for inference:
- Both image_input and mask_input are required to be concatenated composite images.
- Automatically adjusts image dimensions to be multiples of 32 to meet model input requirements.
- Generates a prompt based on the word list and passes it to the pipeline for inference execution.
"""
if isinstance(image_input, str):
inpaint_image = load_image(image_input).convert("RGB")
else:
inpaint_image = image_input.convert("RGB")
if isinstance(mask_input, str):
extended_mask = load_image(mask_input).convert("RGB")
else:
extended_mask = mask_input.convert("RGB")
width, height = inpaint_image.size
new_width = (width // 32) * 32
new_height = (height // 32) * 32
inpaint_image = inpaint_image.resize((new_width, new_height))
extended_mask = extended_mask.resize((new_width, new_height))
words = read_words_from_text(words_input)
prompt = generate_prompt(words)
print("Generated prompt:", prompt)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
mask_transform = transforms.Compose([
transforms.ToTensor()
])
image_tensor = transform(inpaint_image)
mask_tensor = mask_transform(extended_mask)
generator = torch.Generator(device="cuda").manual_seed(int(seed))
pipe = load_flux_pipeline()
if scheduler == "overshoot":
try:
from diffusers import StochasticRFOvershotDiscreteScheduler
scheduler_config = pipe.scheduler.config
scheduler = StochasticRFOvershotDiscreteScheduler.from_config(scheduler_config)
overshot_func = lambda t, dt: t + dt
pipe.scheduler = scheduler
pipe.scheduler.set_c(2.0)
pipe.scheduler.set_overshot_func(overshot_func)
except ImportError:
print("StochasticRFOvershotDiscreteScheduler not found. Please ensure you have used the repo's diffusers.")
pass
result = pipe(
height=new_height,
width=new_width,
image=inpaint_image,
mask_image=extended_mask,
num_inference_steps=num_steps,
generator=generator,
max_sequence_length=512,
guidance_scale=guidance_scale,
prompt=prompt_template2,
prompt_2=prompt,
).images[0]
return result
# =============================================================================
# Normal Mode: Direct Inference Call
# =============================================================================
def flux_demo_normal(image, mask, words, steps, guidance_scale, seed):
"""
Gradio main function for normal mode:
- Directly passes the input image, mask, and word list to run_inference for inference.
- Returns the generated result image.
"""
result = run_inference(image, mask, words, num_steps=steps, guidance_scale=guidance_scale, seed=seed)
return result
# =============================================================================
# Helper functions for both single-line and multi-line rendering
# =============================================================================
def extract_mask(original, drawn, threshold=30):
"""
Extracts a binary mask from the original image and the user-drawn image:
- If 'drawn' is a dictionary and contains a "mask" key, that mask is directly binarized.
- Otherwise, the mask is extracted using inversion and differentiation methods.
"""
if isinstance(drawn, dict):
if "mask" in drawn and drawn["mask"] is not None:
drawn_mask = np.array(drawn["mask"]).astype(np.uint8)
if drawn_mask.ndim == 3:
drawn_mask = cv2.cvtColor(drawn_mask, cv2.COLOR_RGB2GRAY)
_, binary_mask = cv2.threshold(drawn_mask, 50, 255, cv2.THRESH_BINARY)
return Image.fromarray(binary_mask).convert("RGB")
else:
drawn_img = np.array(drawn["image"]).astype(np.uint8)
drawn = 255 - drawn_img
orig_arr = np.array(original).astype(np.int16)
drawn_arr = np.array(drawn).astype(np.int16)
diff = np.abs(drawn_arr - orig_arr)
diff_gray = np.mean(diff, axis=-1)
binary_mask = (diff_gray > threshold).astype(np.uint8) * 255
return Image.fromarray(binary_mask).convert("RGB")
def get_next_seq_number():
"""
Finds the next available sequential number (format: 0001, 0002,...) in the 'outputs_my' directory.
When 'result_XXXX.png' does not exist, that number is considered available, and the formatted string XXXX is returned.
"""
counter = 1
while True:
seq_str = f"{counter:04d}"
result_path = os.path.join("outputs_my", f"result_{seq_str}.png")
if not os.path.exists(result_path):
return seq_str
counter += 1
# =============================================================================
# Single-line text rendering functions
# =============================================================================
def draw_glyph_flexible(font, text, width, height, max_font_size=140):
"""
Renders text horizontally centered on a canvas of specified size and returns a PIL Image.
Font size is automatically adjusted to fit the canvas and is limited by max_font_size.
"""
img = Image.new(mode='RGB', size=(width, height), color='black')
if not text or not text.strip():
return img
draw = ImageDraw.Draw(img)
# Initial font size for calculating scale ratio
g_size = 50
try:
new_font = font.font_variant(size=g_size)
except:
new_font = font
left, top, right, bottom = new_font.getbbox(text)
text_width_initial = max(right - left, 1)
text_height_initial = max(bottom - top, 1)
# Calculate scale ratios based on width and height
width_ratio = width * 0.9 / text_width_initial
height_ratio = height * 0.9 / text_height_initial
ratio = min(width_ratio, height_ratio)
# Adjust maximum font size based on original image width
if width > 1280:
max_font_size = 200
final_font_size = int(g_size * ratio)
final_font_size = min(final_font_size, max_font_size) # Apply upper limit
# Use the final calculated font size
try:
final_font = font.font_variant(size=max(final_font_size, 10))
except:
final_font = font
draw.text((width / 2, height / 2), text, font=final_font, fill='white', anchor='mm')
return img
# =============================================================================
# Multi-line text rendering functions
# =============================================================================
def insert_spaces(text, num_spaces):
"""
Inserts a specified number of spaces between each character to adjust the spacing during text rendering.
"""
if len(text) <= 1:
return text
return (' ' * num_spaces).join(list(text))
def draw_glyph2(
font,
text,
polygon,
vertAng=10,
scale=1,
width=512,
height=512,
add_space=True,
scale_factor=2,
rotate_resample=Image.BICUBIC,
downsample_resample=Image.Resampling.LANCZOS
):
big_w = width * scale_factor
big_h = height * scale_factor
big_polygon = polygon * scale_factor * scale
rect = cv2.minAreaRect(big_polygon.astype(np.float32))
box = cv2.boxPoints(rect)
box = np.intp(box)
w, h = rect[1]
angle = rect[2]
if angle < -45:
angle += 90
angle = -angle
if w < h:
angle += 90
vert = False
if (abs(angle) % 90 < vertAng or abs(90 - abs(angle) % 90) % 90 < vertAng):
_w = max(box[:, 0]) - min(box[:, 0])
_h = max(box[:, 1]) - min(box[:, 1])
if _h >= _w:
vert = True
angle = 0
big_img = Image.new("RGBA", (big_w, big_h), (0, 0, 0, 0))
tmp = Image.new("RGB", big_img.size, "white")
tmp_draw = ImageDraw.Draw(tmp)
_, _, _tw, _th = tmp_draw.textbbox((0, 0), text, font=font)
if _th == 0:
text_w = 0
else:
w_f, h_f = float(w), float(h)
text_w = min(w_f, h_f) * (_tw / _th)
if text_w <= max(w, h):
if len(text) > 1 and not vert and add_space:
for i in range(1, 100):
text_sp = insert_spaces(text, i)
_, _, tw2, th2 = tmp_draw.textbbox((0, 0), text_sp, font=font)
if th2 != 0:
if min(w, h) * (tw2 / th2) > max(w, h):
break
text = insert_spaces(text, i-1)
font_size = min(w, h) * 0.80
else:
shrink = 0.75 if vert else 0.85
if text_w != 0:
font_size = min(w, h) / (text_w / max(w, h)) * shrink
else:
font_size = min(w, h) * 0.80
new_font = font.font_variant(size=int(font_size))
left, top, right, bottom = new_font.getbbox(text)
text_width = right - left
text_height = bottom - top
layer = Image.new("RGBA", big_img.size, (0, 0, 0, 0))
draw_layer = ImageDraw.Draw(layer)
cx, cy = rect[0]
if not vert:
draw_layer.text(
(cx - text_width // 2, cy - text_height // 2 - top),
text,
font=new_font,
fill=(255, 255, 255, 255)
)
else:
_w_ = max(box[:, 0]) - min(box[:, 0])
x_s = min(box[:, 0]) + _w_ // 2 - text_height // 2
y_s = min(box[:, 1])
for c in text:
draw_layer.text((x_s, y_s), c, font=new_font, fill=(255, 255, 255, 255))
_, _t, _, _b = new_font.getbbox(c)
y_s += _b
rotated_layer = layer.rotate(
angle,
expand=True,
center=(cx, cy),
resample=rotate_resample
)
xo = int((big_img.width - rotated_layer.width) // 2)
yo = int((big_img.height - rotated_layer.height) // 2)
big_img.paste(rotated_layer, (xo, yo), rotated_layer)
final_img = big_img.resize((width, height), downsample_resample)
final_np = np.array(final_img)
return final_np
def render_glyph_multi(original, computed_mask, texts):
mask_np = np.array(computed_mask.convert("L"))
contours, _ = cv2.findContours(mask_np, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
regions = []
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
if w * h < 50:
continue
regions.append((x, y, w, h, cnt))
regions = sorted(regions, key=lambda r: (r[1], r[0]))
render_img = Image.new("RGBA", original.size, (0, 0, 0, 0))
try:
base_font = ImageFont.truetype("resource/font/Arial-Unicode-Regular.ttf", 40)
except:
base_font = ImageFont.load_default()
for i, region in enumerate(regions):
if i >= len(texts):
break
text = texts[i].strip()
if not text:
continue
cnt = region[4]
polygon = cnt.reshape(-1, 2)
rendered_np = draw_glyph2(
font=base_font,
text=text,
polygon=polygon,
vertAng=10,
scale=1,
width=original.size[0],
height=original.size[1],
add_space=True,
scale_factor=1,
rotate_resample=Image.BICUBIC,
downsample_resample=Image.Resampling.LANCZOS
)
rendered_img = Image.fromarray(rendered_np, mode="RGBA")
render_img = Image.alpha_composite(render_img, rendered_img)
return render_img.convert("RGB")
def choose_concat_direction(height, width):
"""
Selects the concatenation direction based on the original image's aspect ratio:
- If height is greater than width, horizontal concatenation is used.
- Otherwise, vertical concatenation is used.
"""
return 'horizontal' if height > width else 'vertical'
def is_multiline_text(text):
"""
Determines if the input text should be treated as multi-line based on line breaks.
"""
lines = [line.strip() for line in text.splitlines() if line.strip()]
return len(lines) > 1
# =============================================================================
# Custom Mode: Unified function that handles both single-line and multi-line
# =============================================================================
def flux_demo_custom(original_image, drawn_mask, words, steps, guidance_scale, seed):
"""
Unified custom mode Gradio main function:
- Automatically detects whether to use single-line or multi-line rendering based on input text
- If text contains line breaks, uses multi-line rendering
- If text is single line, uses single-line rendering
"""
computed_mask = extract_mask(original_image, drawn_mask)
# Determine rendering mode based on text input
if is_multiline_text(words):
print("Using multi-line text rendering mode")
return flux_demo_custom_multiline(original_image, computed_mask, words, steps, guidance_scale, seed)
else:
print("Using single-line text rendering mode")
return flux_demo_custom_singleline(original_image, computed_mask, words, steps, guidance_scale, seed)
def flux_demo_custom_multiline(original_image, computed_mask, words, steps, guidance_scale, seed):
"""
Multi-line rendering mode:
1. Splits the user-input text into a list by line, with each line corresponding to a mask region.
2. Calls render_glyph_multi for each independent region to render skewed/curved text, generating a rendered image.
3. Selects the concatenation direction based on the original image's dimensions.
4. Passes the concatenated images to run_inference, returning the generated result and cropped image.
"""
texts = read_words_from_text(words)
render_img = render_glyph_multi(original_image, computed_mask, texts)
width, height = original_image.size
empty_mask = np.zeros((height, width), dtype=np.uint8)
direction = choose_concat_direction(height, width)
if direction == 'horizontal':
combined_image = np.hstack((np.array(render_img), np.array(original_image)))
combined_mask = np.hstack((empty_mask, np.array(computed_mask.convert("L"))))
else:
combined_image = np.vstack((np.array(render_img), np.array(original_image)))
combined_mask = np.vstack((empty_mask, np.array(computed_mask.convert("L"))))
combined_mask = cv2.cvtColor(combined_mask, cv2.COLOR_GRAY2RGB)
composite_image = Image.fromarray(combined_image)
composite_mask = Image.fromarray(combined_mask)
result = run_inference(composite_image, composite_mask, words, num_steps=steps, guidance_scale=guidance_scale, seed=seed)
# Crop the result, keeping only the scene image portion.
width, height = result.size
if direction == 'horizontal':
cropped_result = result.crop((width // 2, 0, width, height))
else:
cropped_result = result.crop((0, height // 2, width, height))
save_results(result, cropped_result, computed_mask, original_image, composite_image, words)
return cropped_result, composite_image, composite_mask
def flux_demo_custom_singleline(original_image, computed_mask, words, steps, guidance_scale, seed):
"""
Single-line rendering mode:
1. Concatenates user input text into a single line.
2. Renders single-line text above the original image.
3. Calls model inference and crops the result precisely.
"""
# Process text, concatenate into single line
text_lines = read_words_from_text(words)
single_line_text = ' '.join(text_lines)
# Calculate dimensions and generate concatenated image and mask
w, h = original_image.size
text_height_ratio = 0.15625
text_render_height = int(w * text_height_ratio)
# Load font
try:
font = ImageFont.truetype("resource/font/Arial-Unicode-Regular.ttf", 60)
except IOError:
font = ImageFont.load_default()
print("Warning: Font not found, using default font.")
# Render single-line text image
text_render_pil = draw_glyph_flexible(font, single_line_text, width=w, height=text_render_height)
# Create pure black mask with same size as text rendering
text_mask_pil = Image.new("RGB", text_render_pil.size, "black")
# Always use vertical concatenation
composite_image = Image.fromarray(np.vstack((np.array(text_render_pil), np.array(original_image))))
composite_mask = Image.fromarray(np.vstack((np.array(text_mask_pil), np.array(computed_mask))))
# Call model inference
full_result = run_inference(composite_image, composite_mask, words, num_steps=steps, guidance_scale=guidance_scale, seed=seed)
# Crop result proportionally, keeping only the scene image portion
res_w, res_h = full_result.size
orig_h = h # Original scene image height
# Calculate crop line top edge position
crop_top_edge = int(res_h * (text_render_height / (orig_h + text_render_height)))
cropped_result = full_result.crop((0, crop_top_edge, res_w, res_h))
save_results(full_result, cropped_result, computed_mask, original_image, composite_image, words)
return cropped_result, composite_image, composite_mask
def save_results(result, cropped_result, computed_mask, original_image, composite_image, words):
"""
Save all related images and text files
"""
os.makedirs("outputs_my", exist_ok=True)
os.makedirs("outputs_my/crop", exist_ok=True)
os.makedirs("outputs_my/mask", exist_ok=True)
os.makedirs("outputs_my/ori", exist_ok=True)
os.makedirs("outputs_my/composite", exist_ok=True)
os.makedirs("outputs_my/txt", exist_ok=True)
seq = get_next_seq_number()
result_filename = os.path.join("outputs_my", f"result_{seq}.png")
crop_filename = os.path.join("outputs_my", "crop", f"crop_{seq}.png")
mask_filename = os.path.join("outputs_my", "mask", f"mask_{seq}.png")
ori_filename = os.path.join("outputs_my", "ori", f"ori_{seq}.png")
composite_filename = os.path.join("outputs_my", "composite", f"composite_{seq}.png")
txt_filename = os.path.join("outputs_my", "txt", f"words_{seq}.txt")
# Save images
result.save(result_filename)
cropped_result.save(crop_filename)
computed_mask.save(mask_filename)
original_image.save(ori_filename)
composite_image.save(composite_filename)
with open(txt_filename, "w", encoding="utf-8") as f:
f.write(words)
# =============================================================================
# Gradio Interface
# =============================================================================
with gr.Blocks(title="Flux Inference Demo") as demo:
gr.Markdown("## Flux Inference Demo")
with gr.Tabs():
with gr.TabItem("Custom Mode"):
with gr.Row():
with gr.Column(scale=1, min_width=350):
gr.Markdown("### Image Input")
original_image_custom = gr.Image(type="pil", label="Upload Original Image")
gr.Markdown("### Draw Mask on Image")
mask_drawing_custom = gr.Image(type="pil", label="Draw Mask on Original Image", tool="sketch")
with gr.Column(scale=1, min_width=350):
gr.Markdown("### Parameter Settings")
words_custom = gr.Textbox(
lines=5,
placeholder="Enter text here (single line recommended, faster and stronger).\nMultiple lines are supported, with each line rendered in corresponding mask regions.",
label="Text Input"
)
steps_custom = gr.Slider(minimum=10, maximum=100, step=1, value=30, label="Inference Steps")
guidance_scale_custom = gr.Slider(minimum=1, maximum=50, step=1, value=30, label="Guidance Scale")
seed_custom = gr.Number(value=42, label="Random Seed")
run_custom = gr.Button("Generate Results")
with gr.Tabs():
with gr.TabItem("Generated Results"):
output_result_custom = gr.Image(type="pil", label="Generated Results")
with gr.TabItem("Input Preview"):
output_composite_custom = gr.Image(type="pil", label="Concatenated Original Image")
output_mask_custom = gr.Image(type="pil", label="Concatenated Mask")
original_image_custom.change(fn=lambda x: x, inputs=original_image_custom, outputs=mask_drawing_custom)
run_custom.click(fn=flux_demo_custom,
inputs=[original_image_custom, mask_drawing_custom, words_custom, steps_custom, guidance_scale_custom, seed_custom],
outputs=[output_result_custom, output_composite_custom, output_mask_custom])
with gr.TabItem("Normal Mode"):
with gr.Row():
with gr.Column(scale=1, min_width=350):
gr.Markdown("### Image Input")
image_normal = gr.Image(type="pil", label="Image Input")
gr.Markdown("### Mask Input")
mask_normal = gr.Image(type="pil", label="Mask Input")
with gr.Column(scale=1, min_width=350):
gr.Markdown("### Parameter Settings")
words_normal = gr.Textbox(lines=5, placeholder="Please enter words here, one per line", label="Text List")
steps_normal = gr.Slider(minimum=10, maximum=100, step=1, value=30, label="Inference Steps")
guidance_scale_normal = gr.Slider(minimum=1, maximum=50, step=1, value=30, label="Guidance Scale")
seed_normal = gr.Number(value=42, label="Random Seed")
run_normal = gr.Button("Generate Results")
output_normal = gr.Image(type="pil", label="Generated Results")
run_normal.click(fn=flux_demo_normal,
inputs=[image_normal, mask_normal, words_normal, steps_normal, guidance_scale_normal, seed_normal],
outputs=output_normal)
gr.Markdown(
"""
### Instructions
- **Custom Mode**:
- Upload an original image, then draw a mask on it
- **Single-line mode**: Enter text without line breaks - all text will be joined and rendered as one line above the image
- **Multi-line mode**: Enter text with line breaks - each line will be rendered in the corresponding mask region with skewed/curved effects
- The system automatically detects which mode to use based on your text input
- **Normal Mode**: Directly upload an image, mask, and a list of words to generate the result image.
"""
)
if __name__ == "__main__":
check_min_version("0.30.1")
demo.launch() |