File size: 12,623 Bytes
3f4265a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f39e4e5
 
3f4265a
 
ab652cc
3f4265a
f39e4e5
 
3f4265a
16332fc
3f4265a
f39e4e5
 
3f4265a
 
f39e4e5
 
 
 
3f4265a
f39e4e5
 
3f4265a
f39e4e5
3f4265a
eeb7ea2
 
 
 
 
 
3f4265a
 
 
 
 
f39e4e5
 
 
 
3f4265a
f39e4e5
 
 
3f4265a
 
 
 
 
f39e4e5
 
3f4265a
 
f39e4e5
3f4265a
f39e4e5
 
3f4265a
 
f39e4e5
3f4265a
f39e4e5
3f4265a
 
f39e4e5
 
3f4265a
f39e4e5
 
3f4265a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# -*- coding: utf-8 -*-
"""rwkv_h.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1Z6xYOW9UPksew3P6bBvCK6FHYzqfBFIo
"""

#请 修改->笔记本设置->T4 GPU,然后确认下方输出Tesla T4来确认有显卡
#然后点击 代码执行工具->全部运行 等待约五到十分钟
#最后点击 最后下方显示的的链接
# !nvidia-smi

# !pip install gradio
# !pip install huggingface_hub
# !pip install pynvml
# !pip install rwkv
# !pip install Ninja

import gradio as gr
import os, gc, copy, torch # Keep torch here for the CUDA_HOME fix
from datetime import datetime
from huggingface_hub import hf_hub_download
from pynvml import *
import re # <--- ADD THIS LINE FOR THE NAMEERROR

# Set CUDA_HOME explicitly for custom CUDA kernel compilation
os.environ["CUDA_HOME"] = "/usr/local/cuda"


# Flag to check if GPU is present
HAS_GPU = False # Initialize to False, let pynvml determine
GPU_COUNT = 0

# Model title and context size limit
ctx_limit = 2000
# You are loading 3B here, which is good.
title = "RWKV-5-H-World-3B" # This was causing OOM
model_file = "rwkv-5-h-world-3B" # Stick with 3B for now

#title = "RWKV-5-H-World-7B" # This was causing OOM
#model_file = "rwkv-5-h-world-7B" # Stick with 7B for now

# Get the GPU count (this part is fine, though pynvml might warn)
try:
    
    print(f"Is CUDA available: {torch.cuda.is_available()}")
    # True
    print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
    # Tesla T4
    
    nvmlInit()
    GPU_COUNT = nvmlDeviceGetCount()
    if GPU_COUNT > 0:
        HAS_GPU = True
        gpu_h = nvmlDeviceGetHandleByIndex(0)
        # Removed .decode() as per previous fix
        print(f"GPU detected: {nvmlDeviceGetName(gpu_h)} with {nvmlDeviceGetMemoryInfo(gpu_h).total / (1024**3):.2f} GB VRAM")
    else:
        print("No NVIDIA GPU detected. Will use CPU strategy.")
except NVMLError as error:
    print(f"NVIDIA driver not found or error: {error}. Will use CPU strategy.")
except Exception as e: # Catch other potential errors during NVML init
    print(f"An unexpected error occurred during GPU detection: {e}. Will use CPU strategy.")


os.environ["RWKV_JIT_ON"] = '1'

# Model strat to use
MODEL_STRAT="cpu bf16" # Default to CPU
os.environ["RWKV_CUDA_ON"] = '0' # Default to 0

# Switch to GPU mode
if HAS_GPU: # Use this more robust check
    os.environ["RWKV_CUDA_ON"] = '1'
    MODEL_STRAT = "cuda bf16" # Keep bf16 for 3B model, as it fits.
    # If you were to try 7B again, THIS is where you'd change to "cuda fp16i8"
print(f"MODEL_STRAT: {MODEL_STRAT}")


# Load the model accordingly
from rwkv.model import RWKV # Keep this import here as per your working code structure
model_path = hf_hub_download(repo_id="a686d380/rwkv-5-h-world", filename=f"{model_file}.pth")
model = RWKV(model=model_path, strategy=MODEL_STRAT)

from rwkv.utils import PIPELINE, PIPELINE_ARGS # Keep this import here
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")

print("RWKV model and pipeline loaded successfully!")

def generate_prompt(instruction, input=None, history=None):
    if instruction:
        instruction = (
            instruction.strip()
            .replace("\r\n", "\n")
            .replace("\n\n", "\n")
            .replace("\n\n", "\n")
        )
    if (history is not None) and len(history) > 1:
        input = ""
        for pair in history:
            if pair[0] is not None and pair[1] is not None and len(pair[1]) > 0:
                input += f"{pair[0]},{pair[1]},"
        input = input[:-1] + f". {instruction}"
        instruction = "Generate a Response to the **last** question below."
    if input and len(input) > 0:
        input = (
            input.strip()
            .replace("\r\n", "\n")
            .replace("\n\n", "\n")
            .replace("\n\n", "\n")
        )
        return f"""Instruction: {instruction}

Input: {input}

Response:"""
    else:
        return f"""User: {instruction}

Assistant:"""


examples = [
    ["東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。", "", 3900, 1.2, 0.5, 0.5, 0.5],
    [
        "Écrivez un programme Python pour miner 1 Bitcoin, avec des commentaires.",
        "",
        3333,
        1.2,
        0.5,
        0.5,
        0.5,
    ],
    ["Write a song about ravens.", "", 3900, 1.2, 0.5, 0.5, 0.5],
    ["Explain the following metaphor: Life is like cats.", "", 3900, 1.2, 0.5, 0.5, 0.5],
    [
        "Write a story using the following information",
        "A man named Alex chops a tree down",
        3333,
        1.2,
        0.5,
        0.5,
        0.5,
    ],
    [
        "Generate a list of adjectives that describe a person as brave.",
        "",
        3333,
        1.2,
        0.5,
        0.5,
        0.5,
    ],
    [
        "You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.",
        "",
        3333,
        1.2,
        0.5,
        0.5,
        0.5,
    ],
]


def generator(
    instruction,
    input=None,
    token_count=3900,
    temperature=1.0,
    top_p=0.5,
    presencePenalty=0.5,
    countPenalty=0.5,
    history=None
):
    args = PIPELINE_ARGS(
        temperature=max(2.0, float(temperature)),
        top_p=float(top_p),
        alpha_frequency=countPenalty,
        alpha_presence=presencePenalty,
        token_ban=[],  # ban the generation of some tokens
        token_stop=[0],  # stop generation whenever you see any token here
    )

    instruction = re.sub(r"\n{2,}", "\n", instruction).strip().replace("\r\n", "\n")
    no_history = (history is None)
    if no_history:
        input = re.sub(r"\n{2,}", "\n", input).strip().replace("\r\n", "\n")
    ctx = generate_prompt(instruction, input, history)
    print(ctx + "\n")

    all_tokens = []
    out_last = 0
    out_str = ""
    occurrence = {}
    state = None
    for i in range(int(token_count)):
        out, state = model.forward(
            pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state
        )
        for n in occurrence:
            out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency

        token = pipeline.sample_logits(
            out, temperature=args.temperature, top_p=args.top_p
        )
        if token in args.token_stop:
            break
        all_tokens += [token]
        for xxx in occurrence:
            occurrence[xxx] *= 0.996
        if token not in occurrence:
            occurrence[token] = 1
        else:
            occurrence[token] += 1

        tmp = pipeline.decode(all_tokens[out_last:])
        if "\ufffd" not in tmp:
            out_str += tmp
            if no_history:
                yield out_str.strip()
            else:
                yield tmp
            out_last = i + 1
        if "\n\n" in out_str:
            break

    del out
    del state
    gc.collect()
    if no_history:
        yield out_str.strip()


def user(message, chatbot):
    chatbot = chatbot or []
    return "", chatbot + [[message, None]]


def alternative(chatbot, history):
    if not chatbot or not history:
        return chatbot, history

    chatbot[-1][1] = None
    history[0] = copy.deepcopy(history[1])

    return chatbot, history


with gr.Blocks(title=title) as demo:
    gr.HTML(f'<div style="text-align: center;">\n<h1>🌍Chat - {title}</h1>\n</div>')
    with gr.Tab("Chat mode"):
        with gr.Row():
            with gr.Column():
                chatbot = gr.Chatbot(type='messages')
                msg = gr.Textbox(
                    scale=4,
                    show_label=False,
                    placeholder="Enter text and press enter",
                    container=False,
                )
                clear = gr.ClearButton([msg, chatbot])
            with gr.Column():
                token_count_chat = gr.Slider(
                    #10, 512, label="Max Tokens", step=10, value=333
                    10, 8000, label="Max Tokens", step=10, value=4000
                )
                temperature_chat = gr.Slider(
                    0.2, 2.0, label="Temperature", step=0.1, value=1.2
                )
                top_p_chat = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.5)
                presence_penalty_chat = gr.Slider(
                    0.0, 1.0, label="Presence Penalty", step=0.1, value=0.5
                )
                count_penalty_chat = gr.Slider(
                    0.0, 1.0, label="Count Penalty", step=0.1, value=0.7
                )

            def clear_chat():
                return "", []

            def user_msg(message, history):
                history = history or []
                return "", history + [[message, None]]

            def respond(history, token_count, temperature, top_p, presence_penalty, count_penalty):
                instruction = history[-1][0]
                history[-1][1] = ""

                for character in generator(
                    instruction,
                    None,
                    token_count,
                    temperature,
                    top_p,
                    presence_penalty,
                    count_penalty,
                    history
                ):
                    history[-1][1] += character
                    yield history

            msg.submit(user_msg, [msg, chatbot], [msg, chatbot], queue=False).then(
                respond, [chatbot, token_count_chat, temperature_chat, top_p_chat, presence_penalty_chat, count_penalty_chat], chatbot, api_name="chat"
            )

    with gr.Tab("Instruct mode"):
        with gr.Row():
            with gr.Column():
                instruction = gr.Textbox(
                    lines=2,
                    label="Instruction",
                    value="東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。",
                )
                input_instruct = gr.Textbox(
                    lines=2, label="Input", placeholder="", value=""
                )
                token_count_instruct = gr.Slider(
                    #10, 512, label="Max Tokens", step=10, value=333
                    10, 8000, label="Max Tokens", step=10, value=4000
                )
                temperature_instruct = gr.Slider(
                    0.2, 2.0, label="Temperature", step=0.1, value=1.2
                )
                top_p_instruct = gr.Slider(
                    0.0, 1.0, label="Top P", step=0.05, value=0.5
                )
                presence_penalty_instruct = gr.Slider(
                    0.0, 1.0, label="Presence Penalty", step=0.1, value=0.5
                )
                count_penalty_instruct = gr.Slider(
                    0.0, 1.0, label="Count Penalty", step=0.1, value=0.5
                )
            with gr.Column():
                with gr.Row():
                    submit = gr.Button("Submit", variant="primary")
                    clear = gr.Button("Clear", variant="secondary")
                output = gr.Textbox(label="Output", lines=5)
        data = gr.Dataset(
            components=[
                instruction,
                input_instruct,
                token_count_instruct,
                temperature_instruct,
                top_p_instruct,
                presence_penalty_instruct,
                count_penalty_instruct,
            ],
            samples=examples,
            label="Example Instructions",
            headers=[
                "Instruction",
                "Input",
                "Max Tokens",
                "Temperature",
                "Top P",
                "Presence Penalty",
                "Count Penalty",
            ],
        )
        submit.click(
            generator,
            [
                instruction,
                input_instruct,
                token_count_instruct,
                temperature_instruct,
                top_p_instruct,
                presence_penalty_instruct,
                count_penalty_instruct,
            ],
            [output],
        )
        clear.click(lambda: None, [], [output])
        data.click(
            lambda x: x,
            [data],
            [
                instruction,
                input_instruct,
                token_count_instruct,
                temperature_instruct,
                top_p_instruct,
                presence_penalty_instruct,
                count_penalty_instruct,
            ],
        )


demo.queue(max_size=10)
#demo.launch(share=False)
demo.launch(share=True)