dhead commited on
Commit
a6ad525
·
verified ·
1 Parent(s): 519934c

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +110 -77
app.py CHANGED
@@ -1,92 +1,137 @@
 
1
  import gradio as gr
2
  import numpy as np
 
 
3
  import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
 
 
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
 
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
 
60
  css = """
61
  #col-container {
62
  margin: 0 auto;
63
- max-width: 640px;
64
  }
65
  """
66
 
67
  with gr.Blocks(css=css) as demo:
 
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
 
71
  with gr.Row():
72
  prompt = gr.Text(
73
  label="Prompt",
74
  show_label=False,
75
  max_lines=1,
76
- placeholder="Enter your prompt",
77
  container=False,
78
  )
79
 
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
 
 
 
84
  with gr.Accordion("Advanced Settings", open=False):
 
85
  negative_prompt = gr.Text(
86
  label="Negative prompt",
87
  max_lines=1,
88
  placeholder="Enter a negative prompt",
89
- visible=False,
 
90
  )
91
 
92
  seed = gr.Slider(
@@ -105,7 +150,7 @@ with gr.Blocks(css=css) as demo:
105
  minimum=256,
106
  maximum=MAX_IMAGE_SIZE,
107
  step=32,
108
- value=1024, # Replace with defaults that work for your model
109
  )
110
 
111
  height = gr.Slider(
@@ -113,42 +158,30 @@ with gr.Blocks(css=css) as demo:
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
  step=32,
116
- value=1024, # Replace with defaults that work for your model
117
  )
118
 
119
  with gr.Row():
120
  guidance_scale = gr.Slider(
121
  label="Guidance scale",
122
  minimum=0.0,
123
- maximum=10.0,
124
  step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
  )
127
 
128
  num_inference_steps = gr.Slider(
129
  label="Number of inference steps",
130
  minimum=1,
131
- maximum=50,
132
  step=1,
133
- value=2, # Replace with defaults that work for your model
134
  )
135
 
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
  fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
+ import spaces
2
  import gradio as gr
3
  import numpy as np
4
+ import PIL.Image
5
+ from PIL import Image
6
  import random
7
+ from diffusers import StableDiffusionXLPipeline
8
+ from diffusers import EulerAncestralDiscreteScheduler
 
9
  import torch
10
+ from compel import Compel, ReturnedEmbeddingsType
11
+ hf_token=os.getenv("HUGGING_FACE_TOKEN"))
12
+
13
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
+
15
+ # Make sure to use torch.float16 consistently throughout the pipeline
16
+ pipe = StableDiffusionXLPipeline.from_pretrained(
17
+ "dhead/wai-nsfw-illustrious-sdxl-v140-sdxl",
18
+ torch_dtype=torch.float16,
19
+ variant="fp16", # Explicitly use fp16 variant
20
+ use_safetensors=True # Use safetensors if available
21
+ )
22
+
23
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
24
+ pipe.to(device)
25
+
26
+ # Force all components to use the same dtype
27
+ pipe.text_encoder.to(torch.float16)
28
+ pipe.text_encoder_2.to(torch.float16)
29
+ pipe.vae.to(torch.float16)
30
+ pipe.unet.to(torch.float16)
31
+
32
+ # 追加: Initialize Compel for long prompt processing
33
+ compel = Compel(
34
+ tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
35
+ text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
36
+ returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
37
+ requires_pooled=[False, True],
38
+ truncate_long_prompts=False
39
+ )
40
 
41
  MAX_SEED = np.iinfo(np.int32).max
42
+ MAX_IMAGE_SIZE = 1216
43
+
44
+ # 追加: Simple long prompt processing function
45
+ def process_long_prompt(prompt, negative_prompt=""):
46
+ """Simple long prompt processing using Compel"""
47
+ try:
48
+ conditioning, pooled = compel([prompt, negative_prompt])
49
+ return conditioning, pooled
50
+ except Exception as e:
51
+ print(f"Long prompt processing failed: {e}, falling back to standard processing")
52
+ return None, None
53
+
54
+ @spaces.GPU
55
+ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
56
+ # 変更: Remove the 60-word limit warning and add long prompt check
57
+ use_long_prompt = len(prompt.split()) > 60 or len(prompt) > 300
58
+
59
  if randomize_seed:
60
  seed = random.randint(0, MAX_SEED)
61
 
62
+ generator = torch.Generator(device=device).manual_seed(seed)
63
+
64
+ try:
65
+ # 追加: Try long prompt processing first if prompt is long
66
+ if use_long_prompt:
67
+ print("Using long prompt processing...")
68
+ conditioning, pooled = process_long_prompt(prompt, negative_prompt)
69
+
70
+ if conditioning is not None:
71
+ output_image = pipe(
72
+ prompt_embeds=conditioning[0:1],
73
+ pooled_prompt_embeds=pooled[0:1],
74
+ negative_prompt_embeds=conditioning[1:2],
75
+ negative_pooled_prompt_embeds=pooled[1:2],
76
+ guidance_scale=guidance_scale,
77
+ num_inference_steps=num_inference_steps,
78
+ width=width,
79
+ height=height,
80
+ generator=generator
81
+ ).images[0]
82
+ return output_image
83
+
84
+ # Fall back to standard processing
85
+ output_image = pipe(
86
+ prompt=prompt,
87
+ negative_prompt=negative_prompt,
88
+ guidance_scale=guidance_scale,
89
+ num_inference_steps=num_inference_steps,
90
+ width=width,
91
+ height=height,
92
+ generator=generator
93
+ ).images[0]
94
+
95
+ return output_image
96
+ except RuntimeError as e:
97
+ print(f"Error during generation: {e}")
98
+ # Return a blank image with error message
99
+ error_img = Image.new('RGB', (width, height), color=(0, 0, 0))
100
+ return error_img
101
 
 
 
 
 
 
 
 
 
102
 
103
  css = """
104
  #col-container {
105
  margin: 0 auto;
106
+ max-width: 1024px;
107
  }
108
  """
109
 
110
  with gr.Blocks(css=css) as demo:
111
+
112
  with gr.Column(elem_id="col-container"):
 
113
 
114
  with gr.Row():
115
  prompt = gr.Text(
116
  label="Prompt",
117
  show_label=False,
118
  max_lines=1,
119
+ placeholder="Enter your prompt (long prompts are automatically supported)",
120
  container=False,
121
  )
122
 
123
+ run_button = gr.Button("Run", scale=0)
 
 
124
 
125
+ result = gr.Image(format="png", label="Result", show_label=False)
126
+
127
  with gr.Accordion("Advanced Settings", open=False):
128
+
129
  negative_prompt = gr.Text(
130
  label="Negative prompt",
131
  max_lines=1,
132
  placeholder="Enter a negative prompt",
133
+ # value="bad quality,worst quality,worst detail,sketch,censor,"
134
+ value="monochrome, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn,"
135
  )
136
 
137
  seed = gr.Slider(
 
150
  minimum=256,
151
  maximum=MAX_IMAGE_SIZE,
152
  step=32,
153
+ value=1024,
154
  )
155
 
156
  height = gr.Slider(
 
158
  minimum=256,
159
  maximum=MAX_IMAGE_SIZE,
160
  step=32,
161
+ value=MAX_IMAGE_SIZE,
162
  )
163
 
164
  with gr.Row():
165
  guidance_scale = gr.Slider(
166
  label="Guidance scale",
167
  minimum=0.0,
168
+ maximum=20.0,
169
  step=0.1,
170
+ value=7,
171
  )
172
 
173
  num_inference_steps = gr.Slider(
174
  label="Number of inference steps",
175
  minimum=1,
176
+ maximum=28,
177
  step=1,
178
+ value=28,
179
  )
180
 
181
+ run_button.click(
 
 
182
  fn=infer,
183
+ inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
184
+ outputs=[result]
 
 
 
 
 
 
 
 
 
185
  )
186
 
187
+ demo.queue().launch()