Spaces:
Runtime error
Runtime error
Update rag_pipeline.py
Browse files- rag_pipeline.py +11 -9
rag_pipeline.py
CHANGED
|
@@ -17,7 +17,7 @@ url_chunks = "https://drive.google.com/uc?export=download&id=1nsrAm_ozsK4GlmMui9
|
|
| 17 |
local_index = "faiss_index.index"
|
| 18 |
local_chunks = "chunks_mapping.pkl"
|
| 19 |
|
| 20 |
-
# ===
|
| 21 |
def download_if_missing(url, local_path):
|
| 22 |
if not os.path.exists(local_path):
|
| 23 |
print(f"⬇️ Lade {local_path} von Google Drive...")
|
|
@@ -29,11 +29,10 @@ def download_if_missing(url, local_path):
|
|
| 29 |
else:
|
| 30 |
raise Exception(f"❌ Download fehlgeschlagen für {local_path}")
|
| 31 |
|
| 32 |
-
# === Dateien herunterladen
|
| 33 |
download_if_missing(url_index, local_index)
|
| 34 |
download_if_missing(url_chunks, local_chunks)
|
| 35 |
|
| 36 |
-
# === FAISS
|
| 37 |
print("📂 Lade FAISS Index und Text-Chunks...")
|
| 38 |
index = faiss.read_index(local_index)
|
| 39 |
|
|
@@ -41,18 +40,21 @@ with open(local_chunks, "rb") as f:
|
|
| 41 |
token_split_texts = pickle.load(f)
|
| 42 |
|
| 43 |
print(f"✅ Geladene Chunks: {len(token_split_texts)}")
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
| 46 |
print("✅ Embeddings kodiert")
|
| 47 |
|
| 48 |
-
# === Abruffunktion
|
| 49 |
def retrieve(query, k=5):
|
| 50 |
query_embedding = model.encode([query], convert_to_numpy=True)
|
| 51 |
distances, indices = index.search(query_embedding, k)
|
| 52 |
-
retrieved_texts = [
|
| 53 |
return retrieved_texts
|
| 54 |
|
| 55 |
-
# === Prompt
|
| 56 |
def build_prompt(query, texts):
|
| 57 |
context = "\n\n".join(texts)
|
| 58 |
return f"Beantworte die folgende Frage basierend auf dem Kontext:\n\nKontext:\n{context}\n\nFrage:\n{query}"
|
|
@@ -61,4 +63,4 @@ def build_prompt(query, texts):
|
|
| 61 |
def run_qa_pipeline(query, k=5):
|
| 62 |
retrieved = retrieve(query, k)
|
| 63 |
prompt = build_prompt(query, retrieved)
|
| 64 |
-
return f"🔍 Kontext gefunden:\n\n{prompt}
|
|
|
|
| 17 |
local_index = "faiss_index.index"
|
| 18 |
local_chunks = "chunks_mapping.pkl"
|
| 19 |
|
| 20 |
+
# === Datei-Download bei Bedarf
|
| 21 |
def download_if_missing(url, local_path):
|
| 22 |
if not os.path.exists(local_path):
|
| 23 |
print(f"⬇️ Lade {local_path} von Google Drive...")
|
|
|
|
| 29 |
else:
|
| 30 |
raise Exception(f"❌ Download fehlgeschlagen für {local_path}")
|
| 31 |
|
|
|
|
| 32 |
download_if_missing(url_index, local_index)
|
| 33 |
download_if_missing(url_chunks, local_chunks)
|
| 34 |
|
| 35 |
+
# === FAISS & Chunks laden
|
| 36 |
print("📂 Lade FAISS Index und Text-Chunks...")
|
| 37 |
index = faiss.read_index(local_index)
|
| 38 |
|
|
|
|
| 40 |
token_split_texts = pickle.load(f)
|
| 41 |
|
| 42 |
print(f"✅ Geladene Chunks: {len(token_split_texts)}")
|
| 43 |
+
|
| 44 |
+
# === Embedding nur auf den ersten 10 Chunks testen
|
| 45 |
+
print("⚙️ Starte Embedding-Berechnung auf 10 Chunks...")
|
| 46 |
+
test_chunks = token_split_texts[:10]
|
| 47 |
+
chunk_embeddings = model.encode(test_chunks, convert_to_numpy=True)
|
| 48 |
print("✅ Embeddings kodiert")
|
| 49 |
|
| 50 |
+
# === Abruffunktion
|
| 51 |
def retrieve(query, k=5):
|
| 52 |
query_embedding = model.encode([query], convert_to_numpy=True)
|
| 53 |
distances, indices = index.search(query_embedding, k)
|
| 54 |
+
retrieved_texts = [test_chunks[i] for i in indices[0]]
|
| 55 |
return retrieved_texts
|
| 56 |
|
| 57 |
+
# === Prompt Builder
|
| 58 |
def build_prompt(query, texts):
|
| 59 |
context = "\n\n".join(texts)
|
| 60 |
return f"Beantworte die folgende Frage basierend auf dem Kontext:\n\nKontext:\n{context}\n\nFrage:\n{query}"
|
|
|
|
| 63 |
def run_qa_pipeline(query, k=5):
|
| 64 |
retrieved = retrieve(query, k)
|
| 65 |
prompt = build_prompt(query, retrieved)
|
| 66 |
+
return f"🔍 Kontext gefunden:\n\n{prompt}"
|