Spaces:
Runtime error
Runtime error
Update rag_pipeline.py
Browse files- rag_pipeline.py +1 -56
rag_pipeline.py
CHANGED
|
@@ -105,62 +105,7 @@ def run_qa_pipeline(query, k=5):
|
|
| 105 |
retrieved = retrieve(query, k)
|
| 106 |
if not retrieved:
|
| 107 |
return "β οΈ Keine relevanten Textstellen gefunden."
|
| 108 |
-
prompt = build_prompt(query, retrieved)
|
| 109 |
-
print("π¨ Prompt gesendet...")
|
| 110 |
-
|
| 111 |
-
if openai_client:
|
| 112 |
-
answer = ask_openai(prompt)
|
| 113 |
-
elif groq_client:
|
| 114 |
-
answer = ask_groq(prompt)
|
| 115 |
-
else:
|
| 116 |
-
return "β οΈ Kein LLM API-Key vorhanden. Bitte OPENAI_API_KEY oder GROQ_API_KEY hinterlegen."
|
| 117 |
-
|
| 118 |
-
return f"π Frage: {query}\n\nπ Antwort:\n{answer}"
|
| 119 |
-
|
| 120 |
-
except Exception as e:
|
| 121 |
-
return f"β Fehler beim Verarbeiten der Anfrage:\n{str(e)}"def build_prompt(query, texts):
|
| 122 |
-
context = "\n\n".join(texts)
|
| 123 |
-
return f"""Beantworte die folgende Frage basierend auf dem Kontext.
|
| 124 |
-
|
| 125 |
-
Kontext:
|
| 126 |
-
{context}
|
| 127 |
-
|
| 128 |
-
Frage:
|
| 129 |
-
{query}
|
| 130 |
-
"""
|
| 131 |
-
|
| 132 |
-
# === Anfrage an OpenAI
|
| 133 |
-
def ask_openai(prompt):
|
| 134 |
-
if not openai_client:
|
| 135 |
-
return "β Kein OpenAI API Key gefunden"
|
| 136 |
-
res = openai_client.chat.completions.create(
|
| 137 |
-
model="gpt-4",
|
| 138 |
-
messages=[
|
| 139 |
-
{"role": "system", "content": "Du bist ein hilfsbereiter Catan-Regel-Experte."},
|
| 140 |
-
{"role": "user", "content": prompt}
|
| 141 |
-
]
|
| 142 |
-
)
|
| 143 |
-
return res.choices[0].message.content.strip()
|
| 144 |
|
| 145 |
-
# === Anfrage an Groq
|
| 146 |
-
def ask_groq(prompt):
|
| 147 |
-
if not groq_client:
|
| 148 |
-
return "β Kein Groq API Key gefunden"
|
| 149 |
-
res = groq_client.chat.completions.create(
|
| 150 |
-
model="llama3-70b-8192",
|
| 151 |
-
messages=[
|
| 152 |
-
{"role": "system", "content": "Du bist ein hilfsbereiter Catan-Regel-Experte."},
|
| 153 |
-
{"role": "user", "content": prompt}
|
| 154 |
-
]
|
| 155 |
-
)
|
| 156 |
-
return res.choices[0].message.content.strip()
|
| 157 |
-
|
| 158 |
-
# === Hauptfunktion fΓΌr Gradio
|
| 159 |
-
def run_qa_pipeline(query, k=5):
|
| 160 |
-
try:
|
| 161 |
-
retrieved = retrieve(query, k)
|
| 162 |
-
if not retrieved:
|
| 163 |
-
return "β οΈ Keine relevanten Textstellen gefunden."
|
| 164 |
prompt = build_prompt(query, retrieved)
|
| 165 |
print("π¨ Prompt gesendet...")
|
| 166 |
|
|
@@ -174,4 +119,4 @@ def run_qa_pipeline(query, k=5):
|
|
| 174 |
return f"π Frage: {query}\n\nπ Antwort:\n{answer}"
|
| 175 |
|
| 176 |
except Exception as e:
|
| 177 |
-
return f"β Fehler
|
|
|
|
| 105 |
retrieved = retrieve(query, k)
|
| 106 |
if not retrieved:
|
| 107 |
return "β οΈ Keine relevanten Textstellen gefunden."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
prompt = build_prompt(query, retrieved)
|
| 110 |
print("π¨ Prompt gesendet...")
|
| 111 |
|
|
|
|
| 119 |
return f"π Frage: {query}\n\nπ Antwort:\n{answer}"
|
| 120 |
|
| 121 |
except Exception as e:
|
| 122 |
+
return f"β Fehler beim Verarbeiten der Anfrage:\n{str(e)}"
|