Spaces:
Runtime error
Runtime error
Update rag_pipeline.py
Browse files- rag_pipeline.py +39 -14
rag_pipeline.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# rag_pipeline.py
|
2 |
|
3 |
import os
|
4 |
import pickle
|
@@ -12,28 +12,46 @@ from groq import Groq
|
|
12 |
from openai import OpenAI
|
13 |
import tqdm
|
14 |
|
15 |
-
|
|
|
|
|
16 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
17 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
18 |
|
19 |
groq_client = Groq(api_key=groq_api_key) if groq_api_key else None
|
20 |
openai_client = OpenAI(api_key=openai_api_key) if openai_api_key else None
|
21 |
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
with open("faiss/chunks_mapping.pkl", "rb") as f:
|
29 |
-
token_split_texts = pickle.load(f)
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
34 |
|
35 |
-
#
|
36 |
-
umap_transform = umap.UMAP(random_state=0, transform_seed=0).fit(chunk_embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def project_embeddings(embeddings, umap_transform):
|
39 |
umap_embeddings = np.empty((len(embeddings), 2))
|
@@ -42,6 +60,8 @@ def project_embeddings(embeddings, umap_transform):
|
|
42 |
return umap_embeddings
|
43 |
|
44 |
def retrieve(query, k=5):
|
|
|
|
|
45 |
query_embedding = model.encode([query], convert_to_numpy=True)
|
46 |
distances, indices = index.search(query_embedding, k)
|
47 |
retrieved_texts = [token_split_texts[i] for i in indices[0]]
|
@@ -85,11 +105,16 @@ def ask_openai_llm(prompt):
|
|
85 |
return response.choices[0].message.content.strip()
|
86 |
|
87 |
def run_qa_pipeline(user_query, k=5):
|
|
|
88 |
retrieved_texts, _, _ = retrieve(user_query, k=k)
|
|
|
|
|
|
|
89 |
prompt = build_prompt(user_query, retrieved_texts)
|
|
|
90 |
answer_groq = ask_groq_llm(prompt)
|
91 |
answer_openai = ask_openai_llm(prompt)
|
92 |
|
93 |
return f"\U0001f999 Groq LLaMA 3 Antwort:\n{answer_groq}\n\n\U0001f52e OpenAI GPT-4 Antwort:\n{answer_openai}"
|
94 |
|
95 |
-
#
|
|
|
1 |
+
# rag_pipeline.py (Debug-Version mit Indexprüfung & Logging)
|
2 |
|
3 |
import os
|
4 |
import pickle
|
|
|
12 |
from openai import OpenAI
|
13 |
import tqdm
|
14 |
|
15 |
+
print("🚀 RAG-App gestartet")
|
16 |
+
|
17 |
+
# === Load environment variables (in HF Spaces über Secrets verfügbar) ===
|
18 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
19 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
20 |
|
21 |
groq_client = Groq(api_key=groq_api_key) if groq_api_key else None
|
22 |
openai_client = OpenAI(api_key=openai_api_key) if openai_api_key else None
|
23 |
|
24 |
+
# === Load SentenceTransformer model ===
|
25 |
+
print("📦 Lade SentenceTransformer Modell...")
|
26 |
+
model = SentenceTransformer("Sahajtomar/German-semantic")
|
27 |
+
print("✅ Modell geladen")
|
28 |
|
29 |
+
# === Lade FAISS-Index und Chunk-Mapping ===
|
30 |
+
try:
|
31 |
+
print("📂 Lade FAISS-Index...")
|
32 |
+
if not os.path.exists("faiss/faiss_index.index"):
|
33 |
+
raise FileNotFoundError("❌ faiss_index.index fehlt!")
|
34 |
|
35 |
+
if not os.path.exists("faiss/chunks_mapping.pkl"):
|
36 |
+
raise FileNotFoundError("❌ chunks_mapping.pkl fehlt!")
|
|
|
|
|
37 |
|
38 |
+
index = faiss.read_index("faiss/faiss_index.index")
|
39 |
+
with open("faiss/chunks_mapping.pkl", "rb") as f:
|
40 |
+
token_split_texts = pickle.load(f)
|
41 |
+
|
42 |
+
chunk_embeddings = model.encode(token_split_texts, convert_to_numpy=True)
|
43 |
+
print("✅ FAISS & Embeddings geladen")
|
44 |
|
45 |
+
# UMAP initialisieren
|
46 |
+
umap_transform = umap.UMAP(random_state=0, transform_seed=0).fit(chunk_embeddings)
|
47 |
+
print("✅ UMAP fit abgeschlossen")
|
48 |
+
|
49 |
+
except Exception as e:
|
50 |
+
print(f"❌ Fehler beim Laden von FAISS oder Chunks: {e}")
|
51 |
+
index = None
|
52 |
+
token_split_texts = []
|
53 |
+
chunk_embeddings = None
|
54 |
+
umap_transform = None
|
55 |
|
56 |
def project_embeddings(embeddings, umap_transform):
|
57 |
umap_embeddings = np.empty((len(embeddings), 2))
|
|
|
60 |
return umap_embeddings
|
61 |
|
62 |
def retrieve(query, k=5):
|
63 |
+
if index is None or chunk_embeddings is None:
|
64 |
+
return ["Kein Index verfügbar."], [], []
|
65 |
query_embedding = model.encode([query], convert_to_numpy=True)
|
66 |
distances, indices = index.search(query_embedding, k)
|
67 |
retrieved_texts = [token_split_texts[i] for i in indices[0]]
|
|
|
105 |
return response.choices[0].message.content.strip()
|
106 |
|
107 |
def run_qa_pipeline(user_query, k=5):
|
108 |
+
print(f"🔎 Frage erhalten: {user_query}")
|
109 |
retrieved_texts, _, _ = retrieve(user_query, k=k)
|
110 |
+
if not retrieved_texts or retrieved_texts[0] == "Kein Index verfügbar.":
|
111 |
+
return "❌ FAISS-Index nicht verfügbar. Bitte lade den Index hoch oder führe die Preprocessing-Pipeline aus."
|
112 |
+
|
113 |
prompt = build_prompt(user_query, retrieved_texts)
|
114 |
+
print("✉️ Prompt gebaut, sende an LLMs...")
|
115 |
answer_groq = ask_groq_llm(prompt)
|
116 |
answer_openai = ask_openai_llm(prompt)
|
117 |
|
118 |
return f"\U0001f999 Groq LLaMA 3 Antwort:\n{answer_groq}\n\n\U0001f52e OpenAI GPT-4 Antwort:\n{answer_openai}"
|
119 |
|
120 |
+
# Ende
|