dewiri commited on
Commit
76f9b76
·
verified ·
1 Parent(s): ed034aa

Update rag_pipeline.py

Browse files
Files changed (1) hide show
  1. rag_pipeline.py +84 -2
rag_pipeline.py CHANGED
@@ -1,8 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  def run_qa_pipeline(user_query, k=5):
2
  retrieved_texts, _, _ = retrieve(user_query, k=k)
3
  prompt = build_prompt(user_query, retrieved_texts)
4
-
5
  answer_groq = ask_groq_llm(prompt)
6
  answer_openai = ask_openai_llm(prompt)
7
 
8
- return f" Groq LLaMA 3:\n{answer_groq}\n\n OpenAI GPT-4:\n{answer_openai}"
 
1
+ # rag_pipeline.py
2
+
3
+ import os
4
+ import pickle
5
+ import numpy as np
6
+ import faiss
7
+ from sentence_transformers import SentenceTransformer
8
+ from langchain_community.embeddings import HuggingFaceEmbeddings
9
+ from langchain.text_splitter import RecursiveCharacterTextSplitter, SentenceTransformersTokenTextSplitter
10
+ import umap.umap_ as umap
11
+ from dotenv import load_dotenv
12
+ from groq import Groq
13
+ from openai import OpenAI
14
+ import tqdm
15
+
16
+ # === Load environment variables (handled by Hugging Face Secrets in deployment) ===
17
+ openai_api_key = os.getenv("OPENAI_API_KEY")
18
+ groq_api_key = os.getenv("GROQ_API_KEY")
19
+
20
+ groq_client = Groq(api_key=groq_api_key) if groq_api_key else None
21
+ openai_client = OpenAI(api_key=openai_api_key) if openai_api_key else None
22
+
23
+ # === Load FAISS Index and Chunks ===
24
+ index = faiss.read_index("faiss/faiss_index.index")
25
+ with open("faiss/chunks_mapping.pkl", "rb") as f:
26
+ token_split_texts = pickle.load(f)
27
+
28
+ # === Load SentenceTransformer model ===
29
+ model = SentenceTransformer("Sahajtomar/German-semantic")
30
+ chunk_embeddings = model.encode(token_split_texts, convert_to_numpy=True)
31
+
32
+ # === Fit UMAP ===
33
+ umap_transform = umap.UMAP(random_state=0, transform_seed=0).fit(chunk_embeddings)
34
+
35
+ def project_embeddings(embeddings, umap_transform):
36
+ umap_embeddings = np.empty((len(embeddings), 2))
37
+ for i, embedding in enumerate(tqdm.tqdm(embeddings, desc="Projecting Embeddings")):
38
+ umap_embeddings[i] = umap_transform.transform([embedding])
39
+ return umap_embeddings
40
+
41
+ def retrieve(query, k=5):
42
+ query_embedding = model.encode([query], convert_to_numpy=True)
43
+ distances, indices = index.search(query_embedding, k)
44
+ retrieved_texts = [token_split_texts[i] for i in indices[0]]
45
+ retrieved_embeddings = np.array([chunk_embeddings[i] for i in indices[0]])
46
+ return retrieved_texts, retrieved_embeddings, distances[0]
47
+
48
+ def build_prompt(query, retrieved_texts):
49
+ context_block = "\n\n".join(retrieved_texts)
50
+ prompt = f"""Beantworte die folgende Frage basierend auf dem gegebenen Kontext.
51
+
52
+ Kontext:
53
+ {context_block}
54
+
55
+ Frage:
56
+ {query}
57
+ """
58
+ return prompt
59
+
60
+ def ask_groq_llm(prompt):
61
+ if not groq_client:
62
+ return "[Fehler] Kein Groq API Key vorhanden."
63
+ response = groq_client.chat.completions.create(
64
+ model="llama3-70b-8192",
65
+ messages=[
66
+ {"role": "system", "content": "Du bist ein hilfreicher Assistent."},
67
+ {"role": "user", "content": prompt}
68
+ ]
69
+ )
70
+ return response.choices[0].message.content.strip()
71
+
72
+ def ask_openai_llm(prompt):
73
+ if not openai_client:
74
+ return "[Fehler] Kein OpenAI API Key vorhanden."
75
+ response = openai_client.chat.completions.create(
76
+ model="gpt-4",
77
+ messages=[
78
+ {"role": "system", "content": "You are a helpful assistant."},
79
+ {"role": "user", "content": prompt}
80
+ ]
81
+ )
82
+ return response.choices[0].message.content.strip()
83
+
84
  def run_qa_pipeline(user_query, k=5):
85
  retrieved_texts, _, _ = retrieve(user_query, k=k)
86
  prompt = build_prompt(user_query, retrieved_texts)
 
87
  answer_groq = ask_groq_llm(prompt)
88
  answer_openai = ask_openai_llm(prompt)
89
 
90
+ return f"\U0001f999 Groq LLaMA 3 Antwort:\n{answer_groq}\n\n\U0001f52e OpenAI GPT-4 Antwort:\n{answer_openai}"