Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- .gitattributes +1 -0
- app.py +150 -0
- biofinetuned_partialEpoch1.pth +3 -0
- requirements.txt +4 -0
- train.csv +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
train.csv filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
import tiktoken
|
4 |
+
import pandas as pd
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
GPT_CONFIG_124M = {
|
8 |
+
"vocab_size": 50257,
|
9 |
+
"context_length": 1024,
|
10 |
+
"emb_dim": 768,
|
11 |
+
"n_heads": 12,
|
12 |
+
"n_layers": 12,
|
13 |
+
"drop_rate": 0.1,
|
14 |
+
"qkv_bias": True
|
15 |
+
}
|
16 |
+
|
17 |
+
class multiheadv2(nn.Module):
|
18 |
+
def __init__(self, d_in, d_out, context_length, dropout, attention_head, boolbias):
|
19 |
+
super().__init__()
|
20 |
+
self.head_dim = d_out // attention_head
|
21 |
+
self.d_out = d_out
|
22 |
+
self.attention_head = attention_head
|
23 |
+
self.W_query = nn.Linear(d_in, d_out, bias=boolbias)
|
24 |
+
self.W_key = nn.Linear(d_in, d_out, bias=boolbias)
|
25 |
+
self.W_value = nn.Linear(d_in, d_out, bias=boolbias)
|
26 |
+
self.out_proj = nn.Linear(d_out, d_out)
|
27 |
+
self.dropout = nn.Dropout(dropout)
|
28 |
+
self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
b, num_token, d_out = x.shape
|
32 |
+
keys = self.W_key(x)
|
33 |
+
queries = self.W_query(x)
|
34 |
+
values = self.W_value(x)
|
35 |
+
keys = keys.view(b, num_token, self.attention_head, self.head_dim).transpose(1, 2)
|
36 |
+
queries = queries.view(b, num_token, self.attention_head, self.head_dim).transpose(1, 2)
|
37 |
+
values = values.view(b, num_token, self.attention_head, self.head_dim).transpose(1, 2)
|
38 |
+
attn_score = queries @ keys.transpose(2, 3)
|
39 |
+
mask_bool = self.mask.bool()[:num_token, :num_token]
|
40 |
+
attn_score.masked_fill_(mask_bool, -torch.inf)
|
41 |
+
attn_weights = torch.softmax(attn_score / keys.shape[-1]**0.5, dim=-1)
|
42 |
+
attn_weights = self.dropout(attn_weights)
|
43 |
+
context_vec = (attn_weights @ values).transpose(1, 2).contiguous().view(b, num_token, self.d_out)
|
44 |
+
context_vec = self.out_proj(context_vec)
|
45 |
+
return context_vec
|
46 |
+
|
47 |
+
class LayerNorm(nn.Module):
|
48 |
+
def __init__(self, emb_dim):
|
49 |
+
super().__init__()
|
50 |
+
self.eps = 1e-5
|
51 |
+
self.scale_params = nn.Parameter(torch.ones(emb_dim))
|
52 |
+
self.shift_params = nn.Parameter(torch.zeros(emb_dim))
|
53 |
+
|
54 |
+
def forward(self, x):
|
55 |
+
mean = x.mean(dim=-1, keepdim=True)
|
56 |
+
var = x.var(dim=-1, keepdim=True, unbiased=False)
|
57 |
+
norm = (x - mean) / torch.sqrt(var + self.eps)
|
58 |
+
return norm * self.scale_params + self.shift_params
|
59 |
+
|
60 |
+
class GELU(nn.Module):
|
61 |
+
def forward(self, x):
|
62 |
+
return 0.5 * x * (1 + torch.tanh(torch.sqrt(torch.tensor(2.0 / torch.pi)) * (x + 0.044715 * torch.pow(x, 3))))
|
63 |
+
|
64 |
+
class feedforward(nn.Module):
|
65 |
+
def __init__(self, config):
|
66 |
+
super().__init__()
|
67 |
+
self.layers = nn.Sequential(
|
68 |
+
nn.Linear(config['emb_dim'], config['emb_dim'] * 4),
|
69 |
+
GELU(),
|
70 |
+
nn.Linear(config['emb_dim'] * 4, config['emb_dim']),
|
71 |
+
)
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
return self.layers(x)
|
75 |
+
|
76 |
+
class TransformerBlock(nn.Module):
|
77 |
+
def __init__(self, config):
|
78 |
+
super().__init__()
|
79 |
+
self.attn = multiheadv2(d_in=config['emb_dim'], d_out=config['emb_dim'], context_length=config['context_length'], dropout=config['drop_rate'], attention_head=config['n_heads'], boolbias=config['qkv_bias'])
|
80 |
+
self.Layernorm1 = LayerNorm(config['emb_dim'])
|
81 |
+
self.Layernorm2 = LayerNorm(config['emb_dim'])
|
82 |
+
self.feedforw = feedforward(config)
|
83 |
+
self.dropout = nn.Dropout(config['drop_rate'])
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
skip = x
|
87 |
+
x = self.Layernorm1(x)
|
88 |
+
x = self.attn(x)
|
89 |
+
x = self.dropout(x)
|
90 |
+
x = x + skip
|
91 |
+
skip = x
|
92 |
+
x = self.Layernorm2(x)
|
93 |
+
x = self.feedforw(x)
|
94 |
+
x = self.dropout(x)
|
95 |
+
x = x + skip
|
96 |
+
return x
|
97 |
+
|
98 |
+
class GPT_2(nn.Module):
|
99 |
+
def __init__(self, cfg, num_classes):
|
100 |
+
super().__init__()
|
101 |
+
self.token_emb = nn.Embedding(cfg['vocab_size'], cfg["emb_dim"])
|
102 |
+
self.pos_emb = nn.Embedding(cfg['context_length'], cfg["emb_dim"])
|
103 |
+
self.drop_emb = nn.Dropout(cfg["drop_rate"])
|
104 |
+
self.trf_blocks = nn.Sequential(*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
|
105 |
+
self.final_norm = LayerNorm(cfg["emb_dim"])
|
106 |
+
self.out_head = nn.Linear(cfg["emb_dim"], num_classes)
|
107 |
+
|
108 |
+
def forward(self, inputidx):
|
109 |
+
batch_size, seq = inputidx.shape
|
110 |
+
tokens = self.token_emb(inputidx)
|
111 |
+
pos_embeds = self.pos_emb(torch.arange(seq, device=inputidx.device))
|
112 |
+
x = tokens + pos_embeds
|
113 |
+
x = self.drop_emb(x)
|
114 |
+
x = self.trf_blocks(x)
|
115 |
+
x = self.final_norm(x)
|
116 |
+
logits = self.out_head(x[:, -1])
|
117 |
+
return logits
|
118 |
+
|
119 |
+
tokenizer = tiktoken.get_encoding("gpt2")
|
120 |
+
pad_token_id = tokenizer.eot_token
|
121 |
+
|
122 |
+
df_temp = pd.read_csv("train.csv")
|
123 |
+
label_mapping = dict(enumerate(df_temp["target"].astype("category").cat.categories))
|
124 |
+
num_classes = len(label_mapping)
|
125 |
+
inv_label_mapping = {v: k for k, v in label_mapping.items()}
|
126 |
+
|
127 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
128 |
+
model = GPT_2(GPT_CONFIG_124M, num_classes)
|
129 |
+
model.load_state_dict(torch.load("biofinetuned_partialEpoch1.pth", map_location=device))
|
130 |
+
model.to(device)
|
131 |
+
model.eval()
|
132 |
+
|
133 |
+
def classify_review(text, max_length=128):
|
134 |
+
input_ids = tokenizer.encode(text)[:max_length]
|
135 |
+
input_ids += [pad_token_id] * (max_length - len(input_ids))
|
136 |
+
input_tensor = torch.tensor(input_ids, device=device).unsqueeze(0)
|
137 |
+
with torch.no_grad():
|
138 |
+
logits = model(input_tensor)
|
139 |
+
predicted_label = torch.argmax(logits, dim=-1).item()
|
140 |
+
return label_mapping[predicted_label]
|
141 |
+
|
142 |
+
iface = gr.Interface(
|
143 |
+
fn=classify_review,
|
144 |
+
inputs=gr.Textbox(label="Enter Medical Abstract / Review"),
|
145 |
+
outputs=gr.Textbox(label="Predicted Category"),
|
146 |
+
title="MedGPT",
|
147 |
+
description="Fast biomedical text classifier trained on domain-specific corpus"
|
148 |
+
)
|
149 |
+
|
150 |
+
iface.launch()
|
biofinetuned_partialEpoch1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1976e67402bb6817609830f3e9188bac1baf2aa1f5e1126d7830244a426fe8c3
|
3 |
+
size 548184304
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
gradio
|
3 |
+
tiktoken
|
4 |
+
pandas
|
train.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:099d9b6ebd52daa2b0c714ffdd40e02106b2a1ed87ea3fed4ea2886eda1ad870
|
3 |
+
size 34433298
|