Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import gradio as gr
|
3 |
+
import networkx as nx
|
4 |
+
import sympy as sp
|
5 |
+
from collections import defaultdict
|
6 |
+
import re
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
import google.generativeai as genai
|
9 |
+
import os
|
10 |
+
from gradio.themes import Ocean
|
11 |
+
|
12 |
+
load_dotenv()
|
13 |
+
API_KEY = os.getenv("GEMINI_API")
|
14 |
+
genai.configure(api_key=API_KEY)
|
15 |
+
|
16 |
+
# Initialize the Gemini Flash Model
|
17 |
+
model = genai.GenerativeModel('gemini-2.5-flash-lite-preview-06-17')
|
18 |
+
|
19 |
+
|
20 |
+
# Gradio App with Support for Multi-Reactant Networks (e.g. A + B -> AB)
|
21 |
+
|
22 |
+
# --- Parsing Functions ---
|
23 |
+
def parse_species(expr):
|
24 |
+
# e.g., "A + B" -> ["A", "B"]
|
25 |
+
return [s.strip() for s in re.split(r'\s*[\+\-]\s*', expr)]
|
26 |
+
|
27 |
+
def parse_network(input_string):
|
28 |
+
edges = []
|
29 |
+
reversible_edges = []
|
30 |
+
|
31 |
+
for part in input_string.split(','):
|
32 |
+
part = part.strip()
|
33 |
+
if '<->' in part:
|
34 |
+
lhs, rhs = part.split('<->')
|
35 |
+
lhs_species = parse_species(lhs)
|
36 |
+
rhs_species = parse_species(rhs)
|
37 |
+
reversible_edges.append((lhs_species, rhs_species))
|
38 |
+
elif '->' in part:
|
39 |
+
lhs, rhs = part.split('->')
|
40 |
+
lhs_species = parse_species(lhs)
|
41 |
+
rhs_species = parse_species(rhs)
|
42 |
+
edges.append((lhs_species, rhs_species))
|
43 |
+
|
44 |
+
return edges, reversible_edges
|
45 |
+
|
46 |
+
def build_graph(edges, reversible_edges):
|
47 |
+
G = nx.DiGraph()
|
48 |
+
for a, b in edges:
|
49 |
+
lhs = " + ".join(a)
|
50 |
+
rhs = " + ".join(b)
|
51 |
+
G.add_edge(lhs, rhs)
|
52 |
+
for a, b in reversible_edges:
|
53 |
+
lhs = " + ".join(a)
|
54 |
+
rhs = " + ".join(b)
|
55 |
+
G.add_edge(lhs, rhs)
|
56 |
+
G.add_edge(rhs, lhs)
|
57 |
+
return G
|
58 |
+
|
59 |
+
def analyze_graph(G):
|
60 |
+
return {
|
61 |
+
"nodes": list(G.nodes),
|
62 |
+
"edges": list(G.edges),
|
63 |
+
"num_nodes": G.number_of_nodes(),
|
64 |
+
"num_edges": G.number_of_edges(),
|
65 |
+
"is_cyclic": not nx.is_directed_acyclic_graph(G)
|
66 |
+
}
|
67 |
+
|
68 |
+
# --- ODE Generator for Complex Reactions ---
|
69 |
+
def mass_action_odes(edges, reversible_edges):
|
70 |
+
species = set()
|
71 |
+
odes = defaultdict(lambda: 0)
|
72 |
+
rate_counter = 1
|
73 |
+
|
74 |
+
def term(species_list):
|
75 |
+
term_expr = 1
|
76 |
+
for s in species_list:
|
77 |
+
sym = sp.symbols(s)
|
78 |
+
species.add(sym)
|
79 |
+
term_expr *= sym
|
80 |
+
return term_expr
|
81 |
+
|
82 |
+
for lhs_species, rhs_species in edges:
|
83 |
+
k = sp.symbols(f'k{rate_counter}')
|
84 |
+
rate_counter += 1
|
85 |
+
|
86 |
+
flux = k * term(lhs_species)
|
87 |
+
for s in lhs_species:
|
88 |
+
sym = sp.symbols(s)
|
89 |
+
odes[sym] -= flux
|
90 |
+
for s in rhs_species:
|
91 |
+
sym = sp.symbols(s)
|
92 |
+
odes[sym] += flux
|
93 |
+
|
94 |
+
for lhs_species, rhs_species in reversible_edges:
|
95 |
+
|
96 |
+
kf = sp.symbols(f'k{rate_counter}')
|
97 |
+
rate_counter += 1
|
98 |
+
kr = sp.symbols(f'k{rate_counter}')
|
99 |
+
rate_counter += 1
|
100 |
+
|
101 |
+
forward_flux = kf * term(lhs_species)
|
102 |
+
reverse_flux = kr * term(rhs_species)
|
103 |
+
|
104 |
+
for s in lhs_species:
|
105 |
+
sym = sp.symbols(s)
|
106 |
+
odes[sym] -= forward_flux
|
107 |
+
odes[sym] += reverse_flux
|
108 |
+
for s in rhs_species:
|
109 |
+
sym = sp.symbols(s)
|
110 |
+
odes[sym] += forward_flux
|
111 |
+
odes[sym] -= reverse_flux
|
112 |
+
|
113 |
+
return dict(odes)
|
114 |
+
|
115 |
+
def format_odes(odes):
|
116 |
+
return "\n".join([f"d{var}/dt = {sp.simplify(expr)}" for var, expr in odes.items()])
|
117 |
+
|
118 |
+
def compute_jacobian(odes):
|
119 |
+
variables = list(odes.keys())
|
120 |
+
F = sp.Matrix([odes[var] for var in variables])
|
121 |
+
J = F.jacobian(variables)
|
122 |
+
return sp.pretty(J)
|
123 |
+
|
124 |
+
def extract_network_from_image(image):
|
125 |
+
prompt = (
|
126 |
+
"Analyze this network diagram and list the network only. "
|
127 |
+
"Use reaction format like 'A + B -> C' or 'X <-> Y'. "
|
128 |
+
"List multiple reactions separated by commas."
|
129 |
+
)
|
130 |
+
gemini_response = model.generate_content([prompt, image])
|
131 |
+
return gemini_response.text.strip()
|
132 |
+
|
133 |
+
|
134 |
+
def full_process(image, text_input, query):
|
135 |
+
if text_input.strip(): # If text is given, use it
|
136 |
+
network_description = text_input.strip()
|
137 |
+
elif image is not None: # Else if image is given, extract network from image
|
138 |
+
network_description = extract_network_from_image(image)
|
139 |
+
else:
|
140 |
+
return "❌ Please provide either a network image or a textual description."
|
141 |
+
|
142 |
+
# Step 2: Process extracted/generated network
|
143 |
+
return process_network(network_description, query)
|
144 |
+
|
145 |
+
|
146 |
+
qa = pipeline("text2text-generation", model="google/flan-t5-base")
|
147 |
+
def process_network(input_string, query):
|
148 |
+
edges, reversible_edges = parse_network(input_string)
|
149 |
+
G = build_graph(edges, reversible_edges)
|
150 |
+
info = analyze_graph(G)
|
151 |
+
|
152 |
+
if 'ode' in query.lower():
|
153 |
+
ode_sys = mass_action_odes(edges, reversible_edges)
|
154 |
+
return format_odes(ode_sys)
|
155 |
+
|
156 |
+
elif 'jacobian' in query.lower():
|
157 |
+
ode_sys = mass_action_odes(edges, reversible_edges)
|
158 |
+
return f"Jacobian Matrix:\n{compute_jacobian(ode_sys)}"
|
159 |
+
|
160 |
+
elif 'variables' in query.lower():
|
161 |
+
return f"There are {info['num_nodes']} variables: {info['nodes']}"
|
162 |
+
|
163 |
+
elif 'edges' in query.lower():
|
164 |
+
return f"Edges: {info['edges']}"
|
165 |
+
|
166 |
+
elif 'cyclic' or 'cycle' in query.lower():
|
167 |
+
cycles = list(nx.simple_cycles(G))
|
168 |
+
if cycles:
|
169 |
+
cycles_str = "\n".join([" -> ".join(cycle + [cycle[0]]) for cycle in cycles])
|
170 |
+
return f"Cycles found:\n{cycles_str}"
|
171 |
+
else:
|
172 |
+
return "No cycles found."
|
173 |
+
|
174 |
+
else:
|
175 |
+
prompt = f"Given the network with nodes: {info['nodes']} and edges: {info['edges']}, answer the query: {query}"
|
176 |
+
answer = qa(prompt, max_length=128)[0]['generated_text']
|
177 |
+
return answer
|
178 |
+
|
179 |
+
|
180 |
+
iface = gr.Interface(
|
181 |
+
fn=full_process,
|
182 |
+
inputs=[
|
183 |
+
gr.Image(type="pil", label="Upload Network Image (optional)"),
|
184 |
+
gr.Textbox(label="Text Input (optional)", placeholder="Or paste network: A + B -> C, X <-> Y"),
|
185 |
+
gr.Textbox(label="Query", placeholder="Ask about ODEs, Jacobian, edges, etc.")
|
186 |
+
],
|
187 |
+
outputs="text",
|
188 |
+
title="Biological Network Analyzer",
|
189 |
+
description="Upload an image or enter network text. Then ask a query like 'Give ODEs' or 'Is it cyclic?'.",
|
190 |
+
theme=Ocean()
|
191 |
+
)
|
192 |
+
|
193 |
+
iface.launch(share=True)
|