# scripts/run_inference.py """ CLI inference with preprocessing parity. Applies: resample → baseline (deg=2) → smooth (w=11,o=2) → normalize unless explicitly disabled via flags. Usage (examples): python scripts/run_inference.py \ --input datasets/rdwp/sta-1.txt \ --arch figure2 \ --weights outputs/figure2_model.pth \ --target-len 500 # Disable smoothing only: python scripts/run_inference.py --input ... --arch resnet --weights ... --disable-smooth """ import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) import argparse import json import csv import logging from pathlib import Path from typing import cast, Dict, List, Any from torch import nn import time import numpy as np import torch import torch.nn.functional as F from models.registry import build, choices, build_multiple, validate_model_list from utils.preprocessing import preprocess_spectrum, TARGET_LENGTH from utils.multifile import parse_spectrum_data, detect_file_format from scripts.plot_spectrum import load_spectrum from scripts.discover_raman_files import label_file def parse_args(): p = argparse.ArgumentParser( description="Raman/FTIR spectrum inference with multi-model support." ) p.add_argument( "--input", required=True, help="Path to spectrum file (.txt, .csv, .json) or directory for batch processing.", ) # Model selection - either single or multiple group = p.add_mutually_exclusive_group(required=True) group.add_argument( "--arch", choices=choices(), help="Single model architecture key." ) group.add_argument( "--models", help="Comma-separated list of models for comparison (e.g., 'figure2,resnet,resnet18vision').", ) p.add_argument( "--weights", help="Path to model weights (.pth). For multi-model, use pattern with {model} placeholder.", ) p.add_argument( "--target-len", type=int, default=TARGET_LENGTH, help="Resample length (default: 500).", ) # Modality support p.add_argument( "--modality", choices=["raman", "ftir"], default="raman", help="Spectroscopy modality for preprocessing (default: raman).", ) # Default = ON; use disable- flags to turn steps off explicitly. p.add_argument( "--disable-baseline", action="store_true", help="Disable baseline correction." ) p.add_argument( "--disable-smooth", action="store_true", help="Disable Savitzky–Golay smoothing.", ) p.add_argument( "--disable-normalize", action="store_true", help="Disable min-max normalization.", ) p.add_argument( "--output", default=None, help="Output path - JSON for single file, CSV for multi-model comparison.", ) p.add_argument( "--output-format", choices=["json", "csv"], default="json", help="Output format for results.", ) p.add_argument( "--device", default="cpu", choices=["cpu", "cuda"], help="Compute device (default: cpu).", ) # File format options p.add_argument( "--file-format", choices=["auto", "txt", "csv", "json"], default="auto", help="Input file format (auto-detect by default).", ) return p.parse_args() # ///////////////////////////////////////////////////////// def _load_state_dict_safe(path: str): """Load a state dict safely across torch versions & checkpoint formats.""" try: obj = torch.load(path, map_location="cpu", weights_only=True) # newer torch except TypeError: obj = torch.load(path, map_location="cpu") # fallback for older torch # Accept either a plain state_dict or a checkpoint dict that contains one if isinstance(obj, dict): for k in ("state_dict", "model_state_dict", "model"): if k in obj and isinstance(obj[k], dict): obj = obj[k] break if not isinstance(obj, dict): raise ValueError( "Loaded object is not a state_dict or checkpoint with a state_dict. " f"Type={type(obj)} from file={path}" ) # Strip DataParallel 'module.' prefixes if present if any(key.startswith("module.") for key in obj.keys()): obj = {key.replace("module.", "", 1): val for key, val in obj.items()} return obj # ///////////////////////////////////////////////////////// def run_single_model_inference( x_raw: np.ndarray, y_raw: np.ndarray, model_name: str, weights_path: str, args: argparse.Namespace, device: torch.device, ) -> Dict[str, Any]: """Run inference with a single model.""" start_time = time.time() # Preprocess spectrum _, y_proc = preprocess_spectrum( x_raw, y_raw, target_len=args.target_len, modality=args.modality, do_baseline=not args.disable_baseline, do_smooth=not args.disable_smooth, do_normalize=not args.disable_normalize, out_dtype="float32", ) # Build model & load weights model = cast(nn.Module, build(model_name, args.target_len)).to(device) state = _load_state_dict_safe(weights_path) missing, unexpected = model.load_state_dict(state, strict=False) if missing or unexpected: logging.info( f"Model {model_name}: Loaded with non-strict keys. missing={len(missing)} unexpected={len(unexpected)}" ) model.eval() # Run inference x_tensor = torch.from_numpy(y_proc[None, None, :]).to(device) with torch.no_grad(): logits = model(x_tensor).float().cpu() probs = F.softmax(logits, dim=1) processing_time = time.time() - start_time probs_np = probs.numpy().ravel().tolist() logits_np = logits.numpy().ravel().tolist() pred_label = int(np.argmax(probs_np)) # Map prediction to class name class_names = ["Stable", "Weathered"] predicted_class = ( class_names[pred_label] if pred_label < len(class_names) else f"Class_{pred_label}" ) return { "model": model_name, "prediction": pred_label, "predicted_class": predicted_class, "confidence": max(probs_np), "probs": probs_np, "logits": logits_np, "processing_time": processing_time, } # ///////////////////////////////////////////////////////// def run_multi_model_inference( x_raw: np.ndarray, y_raw: np.ndarray, model_names: List[str], args: argparse.Namespace, device: torch.device, ) -> Dict[str, Dict[str, Any]]: """Run inference with multiple models for comparison.""" results = {} for model_name in model_names: try: # Generate weights path - either use pattern or assume same weights for all if args.weights and "{model}" in args.weights: weights_path = args.weights.format(model=model_name) elif args.weights: weights_path = args.weights else: # Default weights path pattern weights_path = f"outputs/{model_name}_model.pth" if not Path(weights_path).exists(): logging.warning(f"Weights not found for {model_name}: {weights_path}") continue result = run_single_model_inference( x_raw, y_raw, model_name, weights_path, args, device ) results[model_name] = result except Exception as e: logging.error(f"Failed to run inference with {model_name}: {str(e)}") continue return results # ///////////////////////////////////////////////////////// def save_results( results: Dict[str, Any], output_path: Path, format: str = "json" ) -> None: """Save results to file in specified format""" output_path.parent.mkdir(parents=True, exist_ok=True) if format == "json": with open(output_path, "w", encoding="utf-8") as f: json.dump(results, f, indent=2) elif format == "csv": # Convert to tabular format for CSV if "models" in results: # Multi-model results rows = [] for model_name, model_result in results["models"].items(): row = { "model": model_name, "prediction": model_result["prediction"], "predicted_class": model_result["predicted_class"], "confidence": model_result["confidence"], "processing_time": model_result["processing_time"], } # Add individual class probabilities if "probs" in model_result: for i, prob in enumerate(model_result["probs"]): row[f"prob_class_{i}"] = prob rows.append(row) # Write CSV with open(output_path, "w", newline="", encoding="utf-8") as f: if rows: writer = csv.DictWriter(f, fieldnames=rows[0].keys()) writer.writeheader() writer.writerows(rows) else: # Single model result with open(output_path, "w", newline="", encoding="utf-8") as f: writer = csv.DictWriter(f, fieldnames=results.keys()) writer.writeheader() writer.writerow(results) def main(): logging.basicConfig(level=logging.INFO, format="INFO: %(message)s") args = parse_args() # Input validation in_path = Path(args.input) if not in_path.exists(): raise FileNotFoundError(f"Input file not found: {in_path}") # Determine if this is single or multi-model inference if args.models: model_names = [m.strip() for m in args.models.split(",")] model_names = validate_model_list(model_names) if not model_names: raise ValueError(f"No valid models found in: {args.models}") multi_model = True else: model_names = [args.arch] multi_model = False # Load and parse spectrum data if args.file_format == "auto": file_format = None # Auto-detect else: file_format = args.file_format try: # Read file content with open(in_path, "r", encoding="utf-8") as f: content = f.read() # Parse spectrum data with format detection x_raw, y_raw = parse_spectrum_data(content, str(in_path)) x_raw = np.array(x_raw, dtype=np.float32) y_raw = np.array(y_raw, dtype=np.float32) except Exception as e: x_raw, y_raw = load_spectrum(str(in_path)) x_raw = np.array(x_raw, dtype=np.float32) y_raw = np.array(y_raw, dtype=np.float32) logging.warning( f"Failed to parse with new parser, falling back to original: {e}" ) x_raw, y_raw = load_spectrum(str(in_path)) if len(x_raw) < 10: raise ValueError("Input spectrum has too few points (<10).") # Setup device device = torch.device( args.device if (args.device == "cuda" and torch.cuda.is_available()) else "cpu" ) # Run inference model_results = {} # Initialize to avoid unbound variable error if multi_model: model_results = run_multi_model_inference( np.array(x_raw, dtype=np.float32), np.array(y_raw, dtype=np.float32), model_names, args, device, ) # Get ground truth if available true_label = label_file(str(in_path)) # Prepare combined results results = { "input_file": str(in_path), "modality": args.modality, "models": model_results, "true_label": true_label, "preprocessing": { "baseline": not args.disable_baseline, "smooth": not args.disable_smooth, "normalize": not args.disable_normalize, "target_len": args.target_len, }, "comparison": { "total_models": len(model_results), "agreements": ( sum( 1 for i, (_, r1) in enumerate(model_results.items()) for j, (_, r2) in enumerate( list(model_results.items())[i + 1 :] ) if r1["prediction"] == r2["prediction"] ) if len(model_results) > 1 else 0 ), }, } # Default output path for multi-model default_output = ( Path("outputs") / "inference" / f"{in_path.stem}_comparison.{args.output_format}" ) else: # Single model inference model_result = run_single_model_inference( x_raw, y_raw, model_names[0], args.weights, args, device ) true_label = label_file(str(in_path)) results = { "input_file": str(in_path), "modality": args.modality, "arch": model_names[0], "weights": str(args.weights), "target_len": args.target_len, "preprocessing": { "baseline": not args.disable_baseline, "smooth": not args.disable_smooth, "normalize": not args.disable_normalize, }, "predicted_label": model_result["prediction"], "predicted_class": model_result["predicted_class"], "true_label": true_label, "confidence": model_result["confidence"], "probs": model_result["probs"], "logits": model_result["logits"], "processing_time": model_result["processing_time"], } # Default output path for single model default_output = ( Path("outputs") / "inference" / f"{in_path.stem}_{model_names[0]}.{args.output_format}" ) # Save results output_path = Path(args.output) if args.output else default_output save_results(results, output_path, args.output_format) # Log summary if multi_model: logging.info( f"Multi-model inference completed with {len(model_results)} models" ) for model_name, result in model_results.items(): logging.info( f"{model_name}: {result['predicted_class']} (confidence: {result['confidence']:.3f})" ) logging.info(f"Results saved to {output_path}") else: logging.info( f"Predicted Label: {results['predicted_label']} ({results['predicted_class']})" ) logging.info(f"Confidence: {results['confidence']:.3f}") logging.info(f"True Label: {results['true_label']}") logging.info(f"Result saved to {output_path}") if __name__ == "__main__": main()