""" Asynchronous inference utilities for polymer classification. Supports async processing for improved UI responsiveness. """ import concurrent.futures import time from typing import Dict, Any, List, Optional, Callable from dataclasses import dataclass from enum import Enum import streamlit as st import numpy as np class InferenceStatus(Enum): """Enumeration of possible statuses for an inference task.""" PENDING = "pending" RUNNING = "running" COMPLETED = "completed" FAILED = "failed" @dataclass class InferenceTask: """Represents an asynchronous inference task.""" task_id: str model_name: str input_data: np.ndarray status: InferenceStatus = InferenceStatus.PENDING result: Optional[Dict[str, Any]] = None error: Optional[str] = None start_time: Optional[float] = None end_time: Optional[float] = None @property def duration(self) -> Optional[float]: if self.start_time and self.end_time: return self.end_time - self.start_time return None class AsyncInferenceManager: """Manages asynchronous inference tasks for multiple models.""" def __init__(self, max_workers: int = 3): self.max_workers = max_workers self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) self.tasks: Dict[str, InferenceTask] = {} self._task_counter = 0 def generate_task_id(self) -> str: """Generate unique task ID.""" self._task_counter += 1 return f"task_{self._task_counter}_{int(time.time() * 1000)}" def submit_inference( self, model_name: str, input_data: np.ndarray, inference_func: Callable, **kwargs, ) -> str: """Submit an inference task for asynchronous execution.""" task_id = self.generate_task_id() task = InferenceTask( task_id=task_id, model_name=model_name, input_data=input_data ) self.tasks[task_id] = task # Submit to thread pool self.executor.submit(self._run_inference, task, inference_func, **kwargs) return task_id def _run_inference( self, task: InferenceTask, inference_func: Callable, **kwargs ) -> None: """Execute inference task.""" try: task.status = InferenceStatus.RUNNING task.start_time = time.time() # Run inference result = inference_func(task.input_data, task.model_name, **kwargs) task.result = result task.status = InferenceStatus.COMPLETED task.end_time = time.time() except ( ValueError, TypeError, RuntimeError, ) as e: # Replace with specific exceptions task.error = str(e) task.status = InferenceStatus.FAILED task.end_time = time.time() def get_task_status(self, task_id: str) -> Optional[InferenceTask]: """Get status of a specific task.""" return self.tasks.get(task_id) def get_completed_tasks(self) -> List[InferenceTask]: """Get all completed tasks.""" return [ task for task in self.tasks.values() if task.status == InferenceStatus.COMPLETED ] def get_failed_tasks(self) -> List[InferenceTask]: """Get all failed tasks.""" return [ task for task in self.tasks.values() if task.status == InferenceStatus.FAILED ] def wait_for_completion(self, task_ids: List[str], timeout: float = 30.0) -> bool: """Wait for specific tasks to complete.""" start_time = time.time() while time.time() - start_time < timeout: all_done = all( self.tasks[tid].status in [InferenceStatus.COMPLETED, InferenceStatus.FAILED] for tid in task_ids if tid in self.tasks ) if all_done: return True time.sleep(0.1) return False def cleanup_completed_tasks(self, max_age: float = 300.0) -> None: """Clean up old completed tasks.""" current_time = time.time() to_remove = [] for task_id, task in self.tasks.items(): if ( task.end_time and current_time - task.end_time > max_age and task.status in [InferenceStatus.COMPLETED, InferenceStatus.FAILED] ): to_remove.append(task_id) for task_id in to_remove: del self.tasks[task_id] def shutdown(self): """Shutdown the executor.""" self.executor.shutdown(wait=True) class AsyncInferenceManagerSingleton: """Singleton wrapper for AsyncInferenceManager.""" _instance: Optional[AsyncInferenceManager] = None @classmethod def get_instance(cls) -> AsyncInferenceManager: """Get the singleton instance of AsyncInferenceManager.""" if cls._instance is None: cls._instance = AsyncInferenceManager() return cls._instance def get_async_inference_manager() -> AsyncInferenceManager: """Get or create the singleton async inference manager.""" return AsyncInferenceManagerSingleton.get_instance() @st.cache_resource def get_cached_async_manager(): """Get cached async inference manager for Streamlit.""" return AsyncInferenceManager() def submit_batch_inference( model_names: List[str], input_data: np.ndarray, inference_func: Callable, **kwargs ) -> List[str]: """Submit batch inference for multiple models.""" manager = get_async_inference_manager() task_ids = [] for model_name in model_names: task_id = manager.submit_inference( model_name=model_name, input_data=input_data, inference_func=inference_func, **kwargs, ) task_ids.append(task_id) return task_ids def check_inference_progress(task_ids: List[str]) -> Dict[str, Dict[str, Any]]: """Check progress of multiple inference tasks.""" manager = get_async_inference_manager() progress = {} for task_id in task_ids: task = manager.get_task_status(task_id) if task: progress[task_id] = { "model_name": task.model_name, "status": task.status.value, "duration": task.duration, "error": task.error, } return progress def wait_for_batch_completion( task_ids: List[str], timeout: float = 30.0, progress_callback: Optional[Callable] = None, ) -> Dict[str, Any]: """Wait for batch inference completion with progress updates.""" manager = get_async_inference_manager() start_time = time.time() while time.time() - start_time < timeout: progress = check_inference_progress(task_ids) if progress_callback: progress_callback(progress) # Check if all tasks are done all_done = all( status["status"] in ["completed", "failed"] for status in progress.values() ) if all_done: break time.sleep(0.2) # Collect results results = {} for task_id in task_ids: task = manager.get_task_status(task_id) if task: if task.status == InferenceStatus.COMPLETED: results[task.model_name] = task.result elif task.status == InferenceStatus.FAILED: results[task.model_name] = {"error": task.error} return results