"""Multi-file processing utilities for batch inference. Handles multiple file uploads and iterative processing. Supports TXT, CSV, and JSON file formats with automatic detection.""" from typing import List, Dict, Any, Tuple, Optional, Union import time import streamlit as st import numpy as np import pandas as pd import json import csv import io from pathlib import Path from .preprocessing import resample_spectrum from .errors import ErrorHandler, safe_execute from .results_manager import ResultsManager from .confidence import calculate_softmax_confidence def detect_file_format(filename: str, content: str) -> str: """Automatically detect file format based on exstention and content Args: filename: Name of the file content: Content of the file Returns: File format: .'txt', .'csv', .'json' """ # First try by extension suffix = Path(filename).suffix.lower() if suffix == ".json": try: json.loads(content) return "json" except: pass elif suffix == ".csv": return "csv" elif suffix == ".txt": return "txt" # If extension doesn't match or is unclear, try content detection content_stripped = content.strip() # Try JSON if content_stripped.startswith(("{", "[")): try: json.loads(content) return "json" except: pass # Try CSV (look for commas in first few lines) lines = content_stripped.split("\n")[:5] comma_count = sum(line.count(",") for line in lines) if comma_count > len(lines): # More commas than lines suggests CSV return "csv" # Default to TXT return "txt" # ///////////////////////////////////////////////////// def parse_json_spectrum( content: str, filename: str = "unknown" ) -> Tuple[np.ndarray, np.ndarray]: """ Parse spectrum data from JSON format. Expected formats: - {"wavenumbers": [...], "intensities": [...]} - {"x": [...], "y": [...]} - [{"wavenumber": val, "intensity": val}, ...] """ try: data = json.load(content) # Format 1: Object with arrays if isinstance(data, dict): x_key = None y_key = None # Try common key names for x-axis for key in ["wavenumbers", "wavenumber", "x", "freq", "frequency"]: if key in data: x_key = key break # Try common key names for y-axis for key in ["intensities", "intensity", "y", "counts", "absorbance"]: if key in data: y_key = key break if x_key and y_key: x_vals = np.array(data[x_key], dtype=float) y_vals = np.array(data[y_key], dtype=float) return x_vals, y_vals # Format 2: Array of objects elif isinstance(data, list) and len(data) > 0 and isinstance(data[0], dict): x_vals = [] y_vals = [] for item in data: # Try to find x and y values x_val = None y_val = None for x_key in ["wavenumber", "wavenumbers", "x", "freq"]: if x_key in item: x_val = float(item[x_key]) break for y_key in ["intensity", "intensities", "y", "counts"]: if y_key in item: y_val = float(item[y_key]) break if x_val is not None and y_val is not None: x_vals.append(x_val) y_vals.append(y_val) if x_vals and y_vals: return np.array(x_vals), np.array(y_vals) raise ValueError( "JSON format not recognized. Expected wavenumber/intensity pairs." ) except json.JSONDecodeError as e: raise ValueError(f"Invalid JSON format: {str(e)}") except Exception as e: raise ValueError(f"Failed to parse JSON spectrum: {str(e)}") # ///////////////////////////////////////////////////// def parse_csv_spectrum( content: str, filename: str = "unknown" ) -> Tuple[np.ndarray, np.ndarray]: """ Parse spectrum data from CSV format. Handles various CSV formats with headers or without. """ try: # Use StringIO to treat string as file-like object csv_file = io.StringIO(content) # Try to detect delimiter sample = content[:1024] delimiter = "," if sample.count(";") > sample.count(","): delimiter = ";" elif sample.count("\t") > sample.count(","): delimiter = "\t" # Read CSV csv_reader = csv.reader(csv_file, delimiter=delimiter) rows = list(csv_reader) if not rows: raise ValueError("Empty CSV file") # Check if first row is header has_header = False try: # If first row contains non-numeric data, it's likely a header float(rows[0][0]) float(rows[0][1]) except (ValueError, IndexError): has_header = True data_rows = rows[1:] if has_header else rows # Extract x and y values x_vals = [] y_vals = [] for i, row in enumerate(data_rows): if len(row) < 2: continue try: x_val = float(row[0]) y_val = float(row[1]) x_vals.append(x_val) y_vals.append(y_val) except ValueError: ErrorHandler.log_warning( f"Could not parse CSV row {i+1}: {row}", f"Parsing {filename}" ) continue if len(x_vals) < 10: raise ValueError( f"Insufficient data points ({len(x_vals)}). Need at least 10 points." ) return np.array(x_vals), np.array(y_vals) except Exception as e: raise ValueError(f"Failed to parse CSV spectrum: {str(e)}") # ///////////////////////////////////////////////////// def parse_spectrum_data( text_content: str, filename: str = "unknown", file_format: Optional[str] = None ) -> Tuple[np.ndarray, np.ndarray]: """ Parse spectrum data from text content with automatic format detection. Args: text_content: Raw text content of the spectrum file filename: Name of the file for error reporting file_format: Force specific format ('txt', 'csv', 'json') or None for auto-detection Returns: Tuple of (x_values, y_values) as numpy arrays Raises: ValueError: If the data cannot be parsed """ try: # Detect format if not specified if file_format is None: file_format = detect_file_format(filename, text_content) # Parse based on detected/specified format if file_format == "json": x, y = parse_json_spectrum(text_content, filename) elif file_format == "csv": x, y = parse_csv_spectrum(text_content, filename) else: # Default to TXT format x, y = parse_txt_spectrum(text_content, filename) # Common validation for all formats validate_spectrum_data(x, y, filename) return x, y except Exception as e: raise ValueError(f"Failed to parse spectrum data: {str(e)}") # ///////////////////////////////////////////////////// def parse_txt_spectrum( content: str, filename: str = "unknown" ) -> Tuple[np.ndarray, np.ndarray]: """ Parse spectrum data from TXT format (original implementation). """ lines = content.strip().split("\n") # ==Remove empty lines and comments== data_lines = [] for line in lines: line = line.strip() if line and not line.startswith("#") and not line.startswith("%"): data_lines.append(line) if not data_lines: raise ValueError("No data lines found in file") # ==Try to parse== x_vals, y_vals = [], [] for i, line in enumerate(data_lines): try: # Handle different separators parts = line.replace(",", " ").split() numbers = [ p for p in parts if p.replace(".", "", 1) .replace("-", "", 1) .replace("+", "", 1) .isdigit() ] if len(numbers) >= 2: x_val = float(numbers[0]) y_val = float(numbers[1]) x_vals.append(x_val) y_vals.append(y_val) except ValueError: ErrorHandler.log_warning( f"Could not parse line {i+1}: {line}", f"Parsing {filename}" ) continue if len(x_vals) < 10: # ==Need minimum points for interpolation== raise ValueError( f"Insufficient data points ({len(x_vals)}). Need at least 10 points." ) return np.array(x_vals), np.array(y_vals) # ///////////////////////////////////////////////////// def validate_spectrum_data(x: np.ndarray, y: np.ndarray, filename: str) -> None: """ Validate parsed spectrum data for common issues. """ # Check for NaNs if np.any(np.isnan(x)) or np.any(np.isnan(y)): raise ValueError("Input data contains NaN values") # Check monotonic increasing x (sort if needed) if not np.all(np.diff(x) >= 0): # Sort by x values if not monotonic sort_idx = np.argsort(x) x = x[sort_idx] y = y[sort_idx] ErrorHandler.log_warning( "Wavenumbers were not monotonic - data has been sorted", f"Parsing {filename}", ) # Check reasonable range for spectroscopy if min(x) < 0 or max(x) > 10000 or (max(x) - min(x)) < 100: ErrorHandler.log_warning( f"Unusual wavenumber range: {min(x):.1f} - {max(x):.1f} cm⁻¹", f"Parsing {filename}", ) # ///////////////////////////////////////////////////// def process_single_file( filename: str, text_content: str, model_choice: str, load_model_func, run_inference_func, label_file_func, ) -> Optional[Dict[str, Any]]: """ Process a single spectrum file Args: filename: Name of the file text_content: Raw text content model_choice: Selected model name load_model_func: Function to load the model run_inference_func: Function to run inference label_file_func: Function to extract ground truth label Returns: Dictionary with processing results or None if failed """ start_time = time.time() try: # ==Parse spectrum data== result, success = safe_execute( parse_spectrum_data, text_content, filename, error_context=f"parsing {filename}", show_error=False, ) if not success or result is None: return None x_raw, y_raw = result # ==Resample spectrum== result, success = safe_execute( resample_spectrum, x_raw, y_raw, 500, # TARGET_LEN error_context=f"resampling {filename}", show_error=False, ) if not success or result is None: return None x_resampled, y_resampled = result # ==Run inference== result, success = safe_execute( run_inference_func, y_resampled, model_choice, error_context=f"inference on {filename}", show_error=False, ) if not success or result is None: ErrorHandler.log_error( Exception("Inference failed"), f"processing {filename}" ) return None prediction, logits_list, probs, inference_time, logits = result # ==Calculate confidence== if logits is not None: probs_np, max_confidence, confidence_level, confidence_emoji = ( calculate_softmax_confidence(logits) ) else: probs_np = np.array([]) max_confidence = 0.0 confidence_level = "LOW" confidence_emoji = "🔴" # ==Get ground truth== try: ground_truth = label_file_func(filename) ground_truth = ground_truth if ground_truth >= 0 else None except Exception: ground_truth = None # ==Get predicted class== label_map = {0: "Stable (Unweathered)", 1: "Weathered (Degraded)"} predicted_class = label_map.get(prediction, f"Unknown ({prediction})") processing_time = time.time() - start_time return { "filename": filename, "success": True, "prediction": prediction, "predicted_class": predicted_class, "confidence": max_confidence, "confidence_level": confidence_level, "confidence_emoji": confidence_emoji, "logits": logits_list if logits_list else [], "probabilities": probs_np.tolist() if len(probs_np) > 0 else [], "ground_truth": ground_truth, "processing_time": processing_time, "x_raw": x_raw, "y_raw": y_raw, "x_resampled": x_resampled, "y_resampled": y_resampled, } except Exception as e: ErrorHandler.log_error(e, f"processing {filename}") return { "filename": filename, "success": False, "error": str(e), "processing_time": time.time() - start_time, } def process_multiple_files( uploaded_files: List, model_choice: str, load_model_func, run_inference_func, label_file_func, progress_callback=None, ) -> List[Dict[str, Any]]: """ Process multiple uploaded files Args: uploaded_files: List of uploaded file objects model_choice: Selected model name load_model_func: Function to load the model run_inference_func: Function to run inference label_file_func: Function to extract ground truth label progress_callback: Optional callback to update progress Returns: List of processing results """ results = [] total_files = len(uploaded_files) ErrorHandler.log_info(f"Starting batch processing of {total_files} files") for i, uploaded_file in enumerate(uploaded_files): if progress_callback: progress_callback(i, total_files, uploaded_file.name) try: # ==Read file content== raw = uploaded_file.read() text_content = raw.decode("utf-8") if isinstance(raw, bytes) else raw # ==Process the file== result = process_single_file( uploaded_file.name, text_content, model_choice, load_model_func, run_inference_func, label_file_func, ) if result: results.append(result) # ==Add successful results to the results manager== if result.get("success", False): ResultsManager.add_results( filename=result["filename"], model_name=model_choice, prediction=result["prediction"], predicted_class=result["predicted_class"], confidence=result["confidence"], logits=result["logits"], ground_truth=result["ground_truth"], processing_time=result["processing_time"], metadata={ "confidence_level": result["confidence_level"], "confidence_emoji": result["confidence_emoji"], }, ) except Exception as e: ErrorHandler.log_error(e, f"reading file {uploaded_file.name}") results.append( { "filename": uploaded_file.name, "success": False, "error": f"Failed to read file: {str(e)}", } ) if progress_callback: progress_callback(total_files, total_files, "Complete") ErrorHandler.log_info( f"Completed batch processing: {sum(1 for r in results if r.get('success', False))}/{total_files} successful" ) return results def display_batch_results(batch_results: list): """Renders a clean, consolidated summary of batch processing results using metrics and a pandas DataFrame replacing the old expander list""" if not batch_results: st.info("No batch results to display.") return successful_runs = [r for r in batch_results if r.get("success", False)] failed_runs = [r for r in batch_results if not r.get("success", False)] # 1. High Level Metrics st.markdown("###### Batch Summary") metric_cols = st.columns(3) metric_cols[0].metric("Total Files Processed", f"{len(batch_results)}") metric_cols[1].metric("✔️ Successful", f"{len(successful_runs)}") metric_cols[2].metric("❌ Failed", f"{len(failed_runs)}") # 3 Hidden Failure Details if failed_runs: with st.expander( f"View details for {len(failed_runs)} failed file(s)", expanded=False ): for r in failed_runs: st.error(f"**File:** `{r.get('filename', 'unknown')}`") st.caption( f"Reason for failure: {r.get('error', 'No details provided')}" ) # Legacy display batch results # def display_batch_results(results: List[Dict[str, Any]]) -> None: # """ # Display batch processing results in the UI # Args: # results: List of processing results # """ # if not results: # st.warning("No results to display") # return # successful = [r for r in results if r.get("success", False)] # failed = [r for r in results if not r.get("success", False)] # # ==Summary== # col1, col2, col3 = st.columns(3, border=True) # with col1: # st.metric("Total Files", len(results)) # with col2: # st.metric("Successful", len(successful), # delta=f"{len(successful)/len(results)*100:.1f}%") # with col3: # st.metric("Failed", len( # failed), delta=f"-{len(failed)/len(results)*100:.1f}%" if failed else "0%") # # ==Results tabs== # tab1, tab2 = st.tabs(["✅Successful", "❌ Failed"], width="stretch") # with tab1: # with st.expander("Successful"): # if successful: # for result in successful: # with st.expander(f"{result['filename']}", expanded=False): # col1, col2 = st.columns(2) # with col1: # st.write( # f"**Prediction:** {result['predicted_class']}") # st.write( # f"**Confidence:** {result['confidence_emoji']} {result['confidence_level']} ({result['confidence']:.3f})") # with col2: # st.write( # f"**Processing Time:** {result['processing_time']:.3f}s") # if result['ground_truth'] is not None: # gt_label = {0: "Stable", 1: "Weathered"}.get( # result['ground_truth'], "Unknown") # correct = "✅" if result['prediction'] == result['ground_truth'] else "❌" # st.write( # f"**Ground Truth:** {gt_label} {correct}") # else: # st.info("No successful results") # with tab2: # if failed: # for result in failed: # with st.expander(f"❌ {result['filename']}", expanded=False): # st.error(f"Error: {result.get('error', 'Unknown error')}") # else: # st.success("No failed files!") def create_batch_uploader() -> List: """ Create multi-file uploader widget Returns: List of uploaded files """ uploaded_files = st.file_uploader( "Upload multiple Raman spectrum files (.txt)", type="txt", accept_multiple_files=True, help="Select multiple .txt files with wavenumber and intensity columns", key="batch_uploader", ) return uploaded_files if uploaded_files else []